Posts Tagged ‘prementum’

Archilestes grandis exuvia (female)

November 25, 2022

An odonate exuvia from a Great Spreadwing damselfly (Archilestes grandis) was collected by Edgar Spalding at a small private pond in Middleton, Wisconsin USA.

SEP 2022 | Middleton, WI | Archilestes grandis (exuvia, ventral side)

External gills (3), highlighted by a blue rectangle in the following annotated image, indicate the exuvia is from a damselfly in Suborder Zygoptera.

The camera lens was manually focused on the prementum, located near the anterior end of the exuvia (highlighted by a red rectangle). The overall shape of the prementum indicates this specimen is from Family Lestidae (Spreadwings); the unique shape of the palpal lobes (highlighted by a purple rectangle) indicates Genus Archilestes.

There are two species in Genus Archilestes in North AmericaArchilestes californicus; and Archilestes grandis. I think it’s reasonable to infer this individual is A. grandis since Wisconsin is far out of range for A. californicus.

SEP 2022 | Middleton, WI | Archilestes grandis (exuvia, ventral side)

This individual is a female, as indicated by the rudimentary ovipositor located on the ventral side of its abdomen, near the posterior end (highlighted by a green rectangle in the preceding annotated image).

Related Resources

Copyright © 2022 Walter Sanford. All rights reserved.

Test shots: Libellula luctuosa exuvia

December 5, 2018

Bob Perkins collected and reared a Widow Skimmer dragonfly (Libellula luctuosa) nymph. This blog post features test shots of the exuvia from the odonate nymph.

Several field marks worth noting include the “tiger stripes” on top of its head, wing pads that are perpendicular to the body, dorsal hooks (exact number unknown without closer examination), and lateral spines on abdominal segments eight and nine (S8-9).

The exuvia has small pointy eyes, a mask-like labium (prementum) that covers the face, and thin threadlike antennae.

Background color

In this case, “Test shots” also refers to experimentation with the background color. At the suggestion of Larry de March, Western Odonata Facebook group, I shot the test photos on a Vello 18% gray card.

For a background, I prefer something less bright than pure white to simplify exposure and stay within the dynamic range of the camera. Source Credit: Larry de March.

I edited Photo No. 1 and No. 2 a little differently in an attempt to arrive at a pleasing shade of neutral gray. Notice that No. 1 appears bluer in color than No. 2, which seems to be slighty yellowish.

Although a sample size of one doesn’t necessarily prove anything, my initial opinion is I prefer either an off-white or pure white background. Which color do you prefer?

Related Resource: Three-layer focus stack.

Tech Tips

The following equipment was used to shoot both of the preceding photographs: Canon EOS 5D Mark II digital camera, in manual mode; Kenko 20mm macro automatic extension tubeCanon EF100mm f/2.8L Macro lens (set for manual focus); and Canon MT-26EX-RT Macro Twin Lite set for “Master” mode, and several external flashes set for “Slave” mode including Canon 580 EX- and Canon 580EX II Speedlites and a Godox TT685C Thinklite TTL Flash fitted with a Lastolite Ezybox Speed-Lite 2 flash modifier.

Adobe Photoshop CC 2017 was used to spot-heal and sharpen both images.

Copyright © 2018 Walter Sanford. All rights reserved.

Test shots: Aeshna umbrosa exuvia

December 3, 2018

Bob Perkins collected and reared an unknown species of odonate nymph from a tiny stream in Carroll County, Virginia USA. The larva emerged from one of Bob’s holding tanks overnight on 23-24 November 2018 and metamorphosed into an adult male Shadow Darner dragonfly (Aeshna umbrosa). Shadow Darner is a member of the Family Aeshnidae (Darners). The following test shots show the exuvia from the odonate nymph.

Test shots of this beautiful specimen were taken using a relatively small aperture of f/16 for greater depth of field. Each photo is a “one-off,” that is, not a composite image. Focus stacks will be created sometime in the near future, after the exuvia is rehydrated and its legs are repositioned  for easier posing.

Lateral-ventral view

The focus point of the first photo is on the right eye. Given the orientation of the specimen, most of the exuvia is acceptably in focus at f/16. For what it’s worth, I really like the composition of this photo!

Notice the specimen has a flat labium (prementum) that doesn’t cover the face (not mask-like). That is a characteristic field mark of two families of dragonflies: Family Aeshnidae (Darners); and Family Gomphidae (Clubtails).

This individual is a male, as indicated by vestigial hamules that are visible on the ventral side of the specimen.

Dorsal view

The focus point of the next photo is on the head: the head is tack-sharp; the terminal appendages are in soft-focus. Sometimes it’s necessary to create focus-stacked composite images in order to render the subject in focus from head-to-tail and edge-to-edge.

Lateral spines on abdominal segments six to nine (S6-9) indicate this specimen is A. umbrosa.

The focus point of the next photo is on the abdomen, just below the wing pads. Relative to the preceding photo, notice the head is slightly softer in focus while the terminal appendages are slightly sharper in focus.

Related Resources

Tech Tips

The following equipment was used to shoot all of the preceding photographs: Canon EOS 5D Mark II digital camera, in manual mode; Kenko 20mm macro automatic extension tubeCanon EF100mm f/2.8L Macro lens (set for manual focus); and Canon MT-26EX-RT Macro Twin Lite set for “Master” mode, and several external flashes set for “Slave” mode including Canon 580 EX- and Canon 580EX II Speedlites and a Godox TT685C Thinklite TTL Flash fitted with a Lastolite Ezybox Speed-Lite 2 flash modifier.

Adobe Photoshop CC 2017 was used to spot-heal and sharpen all three images.

Copyright © 2018 Walter Sanford. All rights reserved.

Macromia alleghaniensis exuvia

October 6, 2018

Michael Boatwright, founder and administrator of the Virginia Odonata Facebook group, collected an odonate exuvia on 07 June 2018 along either Little Otter Creek or Otter Creek near the place where both creeks are distributaries of Otter Lake in Amherst County, Virginia USA.

A two-step process was used to identify the genus and species of the exuvia.

  1. Determine the family.
  2. Determine the genus and species.

Step 1. Family

First, determine the family of the specimen. For reference, watch the excellent Vimeo video, Identifying dragonfly larva to family (8:06). Here’s the decision tree used to identify the exuvia as a member of the Family Macromiidae (Cruisers).

  • The specimen has a mask-like labium (prementum) that covers the face, as shown in Photo No. 1, characteristic of four families of odonates: Cordulegastridae (Spiketails); Corduliidae (Emeralds); Libellulidae (Skimmers); and Macromiidae (Cruisers).
  • The teeth on the margins of the labium have a regular pattern. (The pattern reminds me of a “spork.”)
  • Its eyes are small, wide set, and stick up.
  • Image No. 2 shows there is a horn on the face-head, characteristic of Macromiidae.

Photo No. 1 shows a face-head view of the exuvia, magnified approximately three times life size (~3x).

No. 1 | Macromia alleghaniensis | exuvia (face-head)

Image No. 2 shows the top of the head of the exuvia, magnified approximately three times life size (~3x). Notice the prominent horn on the face.

No. 2 | Macromia alleghaniensis | exuvia (head-horn)

Step 2. Genus and species

Two dichotomous keys found on p. 27 of Identification Keys to Northeastern Anisoptera Larvae, compiled by Ken Soltesz, were used to determine the genus and species of the exuvia. Field marks that match this specimen are highlighted in boldface green text. Three boldface green asterisks (***) are used to highlight the thread for identification of this specimen.

Key to the Genera of the Family Macromiidae

***1b. Lateral spines of abdominal segment 9 do not reach to rearward level of tips of inferior appendages [paraprocts]; Sides of head somewhat convergent behind eyes to pair of low turbercules on hind angles; Lateral setae of labium = 6; Small dorsal hook on segment 10. [Macromia]

A small dorsal hook on abdominal segment 10 is characteristic of Genus Macromia.

No. 3 | Macromia alleghaniensis | exuvia (dorsal-lateral)

Look closely at the full-size version of Image No. 4. Notice the little “nub” on abdominal segment 10 (S10), below the underside of the dorsal hook on abdominal segment nine (S9). The same structure is labeled with a white question mark in Image No. 3.

No. 4 | Macromia alleghaniensis | exuvia (dorsal-lateral)

The lateral spines of abdominal segment 9 (S9) do not reach rearward to the tips of the inferior appendages (paraprocts).

No. 5 | Macromia alleghaniensis | exuvia (dorsal)

Key to the Species of Macromia

1a. Lateral spines of abdominal segments 8 and 9 directed straight to rearward. [illinoiensis]

***1b. Lateral spines of abdominal segments 8 and 9 incurved, especially 8. [alleghaniensis]

The lateral spines of abdominal segments 8 and 9 (S8-9) are incurved, especially segment 8 (S8), indicating this species is alleghaniensis.

No. 6 | Macromia alleghaniensis | exuvia (ventral)

This individual is probably a male, as indicated by what appear to be vestigial hamules located on the ventral side of abdominal segments two and three (S2-3).

Summary

A prominent horn on the face is a key field mark for the Family Macromiidae (Cruisers), a small dorsal hook on abdominal segment 10 is one characteristic of the Genus Macromia, and the lateral spines of abdominal segments 8 and 9 (S8-9) are incurved, indicating the species is alleghaniensis. Therefore this specimen is an Allegheny River Cruiser dragonfly (Macromia alleghaniensis).

Bonus Gallery

No. 7 | Macromia alleghaniensis | exuvia (face-head)

No. 8 | Macromia alleghaniensis | exuvia (dorsal-lateral)

No. 9 | Macromia alleghaniensis | exuvia (dorsal)

Related Resources

Tech Tips

The following equipment was used to shoot Photo/Image No. 3-9: Canon EOS 5D Mark II digital camera, in manual mode; Kenko 20mm macro automatic extension tubeCanon EF100mm f/2.8L Macro lens (set for manual focus); Canon MT-26EX-RT Macro Twin Lite set for “Master” mode, and Canon 580 EX- and Canon 580EX II Speedlites set for “Slave” mode. Photo/Image No. 1 and 2Canon MP-E 65mm Macro lens (manual focus only, set for ~3x magnification) plus the multiple-flash setup.

Image No. 2-8 are focus-stacked composite images created and annotated using Adobe Photoshop CC 2017: Image No. 2 (eight photos); Image No. 3 (six photos); Image No. 4 (four photos); Image No. 5 (five photos); Image No. 6 (five photos); Image No. 7 (seven photos); Image No. 8 (seven photos).

Copyright © 2018 Walter Sanford. All rights reserved.

Helocordulia uhleri exuvia

September 14, 2018

An odonate exuvia from the Family Corduliidae (Emeralds) was collected on 06 April 2018 by Michael Boatwright, founder and administrator of the Virginia Odonata Facebook group.

The Backstory

I found a recently-emerged teneral sundragon still clinging to its exuvia along Beck Creek in Amherst County, Virginia USA. Source Credit: Michael Boatwright.

Image used with permission from Michael Boatwright.

After snapping a photo, I gently moved the teneral adult to a nearby blade of grass, snapped another shot, and then collected the exuvia. Although I have seen both Selys’ Sundragon (Helocordulia selysii) and Uhler’s Sundragon (Helocordulia uhleri) in that area, I assumed this one was Selys’ since it’s the more common species there. Source Credit: Michael Boatwright.

Image used with permission from Michael Boatwright.

This is a small genus [Helocordulia] of only two known species found in only the eastern United States and Canada. Source Credit: Needham, J.G., M.J. Westfall, and M.L. May. March 2014. Dragonflies of North America, 3rd Edition: p. 376. Scientific Publishers, Gainesville, Florida.

A two-step process was used to verify the genus and species of the exuvia.

  1. Determine the family.
  2. Determine the genus and species.

Step 1. Family

First, determine the family of the specimen. For reference, watch the excellent Vimeo video, Identifying dragonfly larva to family (8:06). Here’s the decision tree used to identify the exuvia as a member of the Family Corduliidae (Emeralds).

  • The specimen has a mask-like labium (prementum) that covers the face, as shown in Image No. 1, characteristic of four families of odonates: Cordulegastridae (Spiketails); Corduliidae (Emeralds); Libellulidae (Skimmers); and Macromiidae (Cruisers).
  • There is no horn on the face-head, characteristic of Macromiidae, so it’s not a cruiser.
  • Cordulegastridae has jagged crenulations on its labium, so it’s not a spiketail. The crenulations for Corduliidae and Libellulidae look similar.
  • Look at the anal pyramid to differentiate Corduliidae and Libellulidae: It’s probably Corduliidae if the cerci are at least half as long as the paraprocts. [Editor’s Note: It’s probably Libellulidae if the cerci are less than half the length of the paraprocts.]

In summary, the exuvia has a mask-like labium with relatively smooth crenulations, and no horn on its face-head. Although the specimen is too dirty to see the anal pyramid clearly, field observation of the teneral adult confirms the dragonfly is a member of Genus Heliocordulia (Sundragons) in the Family Corduliidae (Emeralds).

Image No. 1 shows a face-head view of the exuvia, magnified approximately three times life size (~3x). Notice the labium that covers the face is missing one of two palpal lobes; the missing lobe is shown in Image No. 4.

No. 1 | Helocordulia uhleri | exuvia (face-head)

Step 2. Genus and species

The dichotomous key for “Helocordulia larvae” that appears on p. 377 in Dragonflies of North America (Needham, et al.) was used to verify the genus and species of the exuvia. Field marks that match this specimen are highlighted in boldface green text. Three boldface green asterisks (***) are used to highlight the thread for identification of this specimen.

***1. Dorsal hooks on abdominal segments 7-9; palpal setae 7; lateral spines of segment 8 about 1/2 as long as on segment 9 [uhleri]
1’. Dorsal hooks on abdominal segments 6-9; palpal setae usually 6; lateral spines of segment 8 about as long as on segment 9 [selysii]

Image No. 2 shows a dorsal view of the specimen. Notice the mid-dorsal hooks on abdominal segments seven through nine (S7-9), labeled using white text.

No. 2 | Helocordulia uhleri | exuvia (dorsal)

Image No. 3 clearly shows the dorsal hooks on abdominal segments seven through nine (S7-9). This distinctive character confirms the identity of the species as H. uhleri.

No. 3 | Helocordulia uhleri | exuvia (lateral)

Image No. 4 shows a palpal lobe from the specimen, viewed from the inside, magnified approximately three times life size (~3x). There is one palpal seta and at least seven sites where setae might have been located before the palpal lobe broke off the prementum. Although this character is inconclusive for confirming the species (given the condition of the palpal lobe), it’s not exclusive.

No. 4 | Helocordulia uhleri | palpal lobe (inside)

Image No. 5 shows a ventral view of the specimen. Notice the lateral spine on abdominal segment eight (S8) is about half as long as the lateral spine on segment nine (S9).

When measuring spines, I measure them ventral from the inside corner to the tip. There is a suture on the ventral side, near the base, that makes a nice repeatable starting point for measuring. Source Credit: Ken Tennessen, personal communication.

No. 5 | Helocordulia uhleri | exuvia (ventral)

Takeaways

Perhaps the biggest takeaway from working to identify this exuvia is the fact that it enabled the correct identification of the teneral adult dragonfly that Mike observed and photographed. In fact, Mike is the one who first recognized the species is H. uhleri, based upon the number of mid-dorsal hooks on the exuvia.

Related Resources

Odonate Exuviae – a hyperlinked list of identification guides to many species of odonate exuviae from seven families of dragonflies and three families of damselflies.

Tech Tips

Mike Boatwright’s photographs, taken in situ, were shot using a Canon EOS 7D digital camera and Canon 300mm prime lens paired with a Canon 1.4x Extender EF.

The following equipment was used to shoot Image No. 2, 3, and 5: Canon EOS 5D Mark II digital camera, in manual mode; Kenko 20mm macro automatic extension tubeCanon EF100mm f/2.8L Macro lens (set for manual focus); Canon MT-26EX-RT Macro Twin Lite set for “Master” mode, and Canon 580 EX- and Canon 580EX II Speedlites set for “Slave” mode. Image No. 1 and 4Canon MP-E 65mm Macro lens (manual focus only, set for ~3x magnification) plus the multiple-flash setup.

Image No. 1-5 are focus-stacked composite images created and annotated using Adobe Photoshop CC 2017: Image No. 1 (seven photos); Image No. 2 (30 photos); Image No. 3 (16 photos); Image No. 4 (10 photos); Image No. 5 (24 photos).

Copyright © 2018 Walter Sanford. All rights reserved.

Epitheca princeps exuvia

September 6, 2018

An odonate exuvia was collected by Michael Boatwright, founder and administrator of the Virginia Odonata Facebook group, on 07 June 2018 at Otter Lake in Amherst County, Virginia USA.

A two-step process was used to identify the genus and species of the specimen.

  1. Determine the family.
  2. Determine the genus and species.

Step 1. Family

First, determine the family of the specimen. For reference, watch the excellent Vimeo video, Identifying dragonfly larva to family (8:06). Here’s the decision tree used to identify the exuvia as a member of the Family Corduliidae (Emeralds).

  • The specimen has a mask-like labium (prementum) that covers the face, as shown in Image No. 1, characteristic of four families of odonates: Cordulegastridae (Spiketails); Corduliidae (Emeralds); Libellulidae (Skimmers); and Macromiidae (Cruisers).
  • There is no horn on the face-head, characteristic of Macromiidae, so it’s not a cruiser.
  • Cordulegastridae has jagged crenulations on its labium, so it’s not a spiketail. The crenulations for Corduliidae and Libellulidae look similar.
  • Look at the anal pyramid to differentiate Corduliidae and Libellulidae: It’s probably Corduliidae if the cerci are at least half as long as the paraprocts, as shown in Image No. 4. [Editor’s Note: It’s probably Libellulidae if the cerci are less than half the length of the paraprocts.]

In summary, the exuvia has a mask-like labium with relatively smooth crenulations, no horn on its face-head, and the cerci are more than half as long as the paraprocts, confirming that the specimen is a member of Family Corduliidae (Emeralds).

No. 1Epitheca princeps | exuvia (face-head)

Step 2. Genus and species

Characters from two dichotomous keys were used to identify the genus and species: Prince Baskettail dragonfly (Epitheca princeps). See Epitheca princeps exuvia, another of my illustrated guides to identification of odonate exuviae, for a detailed explanation of the decision tree used to identify the genus and species of this specimen.

No. 2 | Epitheca princeps | exuvia (dorsal)

This individual is a male, as indicated by the vestigial hamuli visible on the ventral side of abdominal segments two and three (S2-3).

No. 3Epitheca princeps | exuvia (ventral)

Notice the cerci are at least half as long as the paraprocts, as shown in Image No. 4.

No. 4Epitheca princeps | exuvia (posterior abdomen)

Image No. 5 shows a dorsal-lateral view of the mid-dorsal hooks.

No. 5Epitheca princeps | exuvia (dorsal-lateral)

Look-alike species

I really wanted this specimen to be Stream Cruiser dragonfly (Didymops transversa). I think exuviae from D. transversa and E. princeps are similar in appearance — an opinion not shared by at least one expert on identification of odonate exuviae.

Two characters proved to be the deal-breaker that forced me to abandon D. tranversa in favor of E. princeps. 1) The specimen does not have a horn on its face-head. 2) This specimen is only 25 mm long (2.5 cm); D. transversa larvae/exuviae are 30 mm long (3.0 cm), according to Dragonflies of North America, Needham, James G., et al.

Related Resources

Odonate Exuviae – a hyperlinked list of identification guides to many species of odonate exuviae from seven families of dragonflies and three families of damselflies.

Tech Tips

The following equipment was used to shoot Image No. 1-5: Canon EOS 5D Mark II digital camera, in manual mode; Kenko 20mm macro automatic extension tubeCanon EF100mm f/2.8L Macro lens (set for manual focus); Canon MT-26EX-RT Macro Twin Lite set for “Master” mode, and Canon 580 EX- and Canon 580EX II Speedlites set for “Slave” mode.

Image No. 1-5 are focus-stacked composite images created and annotated using Adobe Photoshop CC 2017: Image No. 1 (7 photos); Image No. 2 (22 photos); Image No. 3 (19 photos); Image No. 4 (10 photos); Image No. 5 (20 photos).

Copyright © 2018 Walter Sanford. All rights reserved.

Post update: Phanogomphus lividus exuvia

April 13, 2018

Phanogomphus lividus exuvia, my identification guide for Ashy Clubtail exuviae, was updated to feature two new annotated high-magnification macro composite images.

  • Photo No. 1: The specimen was rehydrated/relaxed in order to reposition the front legs for an unobstructed view of the prementum, especially the median lobe of the labium.
  • Photo No. 2: A close-up view of the anal pyramid (terminal appendages) verified the “superior caudal appendage (epiproct) is as long as inferiors (paraprocts).”

The first image is a composite of six photos that shows a ventral view of the prementum.

Editor’s Note: Sincere thanks to Sue and John Gregoire for guiding me to the location of the median lobe.

The last image is a composite of 15 photos that shows a dorsal view of the abdomen; the inset image is a selection from a composite of 10 photos that shows a ventral view of the anal pyramid.

No. 2 | Ashy Clubtail (Phanogomphus lividus) | exuvia (anal pyramid)

The Backstory

An Ashy Clubtail dragonfly (Phanogomphus lividusnymph was collected by Bob Perkins. (The date and location where the specimen was collected are unknown.) The nymph was reared in captivity until it emerged on 21 March 2017 and metamorphosed into an adult female. This specimen is the exuvia from the nymph. P. lividus is a member of the Family Gomphidae (Clubtails).

Tech Tips

The following equipment was used to shoot all of the photos for the preceding composite images: Canon EOS 5D Mark II digital camera, in manual mode; Canon MP-E 65mm Macro lens (manual focus only, set for f/8 at either 2x or ~3x magnification); Canon MT-26EX-RT Macro Twin Lite set for “Master” mode; and Canon 580 EX- and Canon 580EX II Speedlites in “Slave” mode.

Adobe Photoshop CC 2017 was used to create the composite image by “round-tripping” with Apple Aperture.

Copyright © 2018 Walter Sanford. All rights reserved.

P. lividus prementum

April 11, 2018

The following image shows a composite of six photos of the prementum for an Ashy Clubtail dragonfly (Phanogomphus lividus) exuvia. The composite is one of at least two new images that will be annotated and used to update Phanogomphus lividus exuvia, my identification guide for Ashy Clubtail exuviae.

The Backstory

An Ashy Clubtail dragonfly (Phanogomphus lividusnymph was collected by Bob Perkins. (The date and location where the specimen was collected are unknown.) The nymph was reared in captivity until it emerged on 21 March 2017 and metamorphosed into an adult female. This specimen is the exuvia from the nymph. P. lividus is a member of the Family Gomphidae (Clubtails).

Tech Tips

The following equipment was used to shoot all of the photos for the preceding composite image: Canon EOS 5D Mark II digital camera, in manual mode; Canon MP-E 65mm Macro lens (manual focus only, set for f/8 at ~3x magnification); Canon MT-26EX-RT Macro Twin Lite set for “Master” mode; and Canon 580 EX- and Canon 580EX II Speedlites in “Slave” mode.

Adobe Photoshop CC 2017 was used to create the composite image by “round-tripping” with Apple Aperture.

Copyright © 2018 Walter Sanford. All rights reserved.

Phanogomphus lividus exuvia

April 5, 2018

The Backstory

An Ashy Clubtail dragonfly (Phanogomphus lividusnymph was collected by Bob Perkins. (The date and location where the specimen was collected are unknown.) The nymph was reared in captivity until it emerged on 21 March 2017 and metamorphosed into an adult female. This specimen is the exuvia from the nymph. P. lividus is a member of the Family Gomphidae (Clubtails).

A two-step process was used to verify the identity of the exuvia.

  1. Determine the family.
  2. Determine the genus and species.

Step 1. Family

First, determine the family of the specimen. For reference, watch the excellent Vimeo video Identifying dragonfly larva to family (8:06). Here’s the decision tree used to identify the exuvia as a member of the Family Gomphidae (Clubtails).

  • The specimen has a flat labium that doesn’t cover the face (not mask-like), as shown in Photo No. 1 and 3.
  • Antennae are club-like (not thin and thread-like, as in  Aeshnidae larvae), as shown in Photo No. 1.

It’s simple and straightforward to recognize this specimen is a clubtail.

No. 1 | Ashy Clubtail (Phanogomphus lividus) | exuvia (face-head)

Step 2. Genus and species

Lateral spines are present on abdominal segments six through nine (S6-S9).

The superior caudal appendage (epiproct) is as long as inferiors (paraprocts), as shown in Photo No. 4. The view of the terminal appendages is still slightly obscured by debris after the specimen was cleaned, making it challenging to distinguish the cerci from the paraprocts. Nonetheless, the epiproct and paraprocts appear to be nearly the same length.

The median lobe of the labium (prementum) is straight-edged, as shown in Photo No. 5.

After emergence

The next photograph shows the Ashy Clubtail dragonfly after emergence from one of Bob Perkins‘ holding tanks. Phanogomphus lividus is 48-56 mm in total length (Paulson, 2011).

Image used with permission from Bob Perkins.

This individual is a female, as indicated by its rounded hind wings and terminal appendages.

Image used with permission from Bob Perkins.

Related Resource

The dichotomous key for Gomphus (now Phanogomphus) that appears on p. 20 in Identification Keys to Northeastern Anisoptera Larvae, compiled by Ken Soltesz, was used to attempt to verify the genus and species of the exuvia. Field marks that match this specimen are highlighted in boldface green text. Three boldface green asterisks (***) are used to highlight the thread for identification of P. lividus. Disclaimers are highlighted in boldface red text.

1a. Lateral spines on abdominal segments 7 to 9 (very minute if present on 6). [2]
***1b. Lateral spines on abdominal segments 6 to 9 well developed. [3]

3a. Superior caudal appendage (epiproct) shorter than inferiors (paraprocts); Teeth on lateral lobes of labium obsolete or poorly developed. [quadricolor]
***3b. Superior caudal appendage (epiproct) as long as inferiors (paraprocts); Teeth on lateral lobes of labium well developed. [4]

***4a. Median lobe of labium straight-edged. [lividus]
4b. Median lobe of labium convex-edged. [5]


Note: The weakest aspect of this key is couplet 4, as it applies to Gomphus descriptus [Harpoon Clubtail], the difference in the “convexity” of the median lobe between lividus and descriptus being very slight and difficult to discern in practice. Donnelly (pers. comm.) has found that, at least with New York specimens, the posterior narrowing of the median lobe of the labium is more abrupt in livid, and relatively gradual in descriptus. Also, the labial teeth are better developed in livid than in descriptus. These characters are so relative that any unknown suspected of being either of these species should be compared to reference specimens.

Tech Tips

The following equipment was used to shoot Photo No. 2 and 3: Canon EOS 5D Mark II digital camera, in manual mode; Kenko 20mm macro automatic extension tubeCanon EF100mm f/2.8L Macro lens (set for manual focus); Canon MT-26EX-RT Macro Twin Lite set for “Master” mode, and Canon 580 EX- and Canon 580EX II Speedlites set for “Slave” mode. Photo No. 1, 4, and 5Canon MP-E 65mm Macro lens (manual focus only, set for either 2x or 3x magnification) plus the multiple-flash setup.

Photo No. 1-3 are focus-stacked composite images created and annotated using Adobe Photoshop CC 2017.

Bob Perkins’ photos were shot using a Canon EOS Rebel T3i camera body and Canon EF-S 60mm macro lens.

Copyright © 2018 Walter Sanford. All rights reserved.

Ophiogomphus incurvatus exuvia

March 26, 2018

Disclaimer

Soon after I began creating illustrated identification guides for odonate exuviae, I shared a pointer to Perithemis tenera exuviae on the Northeast Odonata Facebook group. Ed Lam commented on my post. The operative sentence is as follows.

I don’t expect anyone to identify Perithemis tenera larvae from Walter’s blog post but it gives a novice a better sense of what larval identification is all about and that has value. Source Credit: Ed Lam, Northeast Odonata Facebook group.

I disagree with Ed’s comment, although I let it go at the time in deference to Ed’s considerable expertise. I do expect anyone can use my guides to identify the species of odonate featured in each guide. Otherwise, what’s the point of making the guides? After I read Ed’s comment I tweaked the specific blog post and retooled the template that I use for most guides.

All of that being said, in my opinion it would be challenging at best to identify an exuvia from Ophiogomphus incurvatus to the species level using only the dichotomous key in Dragonflies of North America by Needham et al., the best resource currently available — significant sections of the key are unclear and unreliable. In contrast, Bob Perkins and I know the identity of the specimen because Bob observed the species of adult dragonfly that emerged from the exuvia.

For what it’s worth, this blog post features a fairly complete set of annotated photos of an Ophiogomphus incurvatus exuvia. Perhaps the photo set can be used in combination with the dichotomous key in order to make identification easier for others.

The Backstory

An Appalachian Snaketail dragonfly (Ophiogomphus incurvatus) nymph was collected by Bob Perkins. The nymph was reared in captivity until it emerged on 20 March 2017 and metamorphosed into an adult male. This specimen is the exuvia from the nymph. Appalachian Snaketail is a member of the Family Gomphidae (Clubtails).

A two-step process was used to attempt to verify the identity of the exuvia.

  1. Determine the family.
  2. Determine the genus and species.

Step 1. Family

First, determine the family of the specimen. For reference, watch the excellent Vimeo video Identifying dragonfly larva to family (8:06). Here’s the decision tree used to identify the exuvia as a member of the Family Gomphidae (Clubtails).

  • The specimen has a flat labium that doesn’t cover the face (not mask-like), as shown in Photo No. 1, 5, and 6.
  • Antennae are club-like (not thin and thread-like, as in  Aeshnidae larvae), as shown in Photo No. 1.

It’s simple and straightforward to recognize this specimen is a clubtail. Expect a bumpy ride beyond this point!

No. 1 | Ophiogomphus incurvatus | exuvia (face-head)

Step 2. Genus and species

The size of specific antennal segments is a significant marker for identifying some species of Ophiogomphus. In this case, the antennae on the specimen will need to be cleaned in order to count segments and measure their dimensions.

No. 2 | Ophiogomphus incurvatus | exuvia (dorsal)

Lateral spines are present on abdominal segments seven through nine (S7-S9). Dorsal hooks appear to be well developed on segments eight and nine (S8, S9); they resemble “dorsal abdominal processes” on most other abdominal segments.

No. 3 | Ophiogomphus incurvatus | exuvia (dorsal-lateral)

The cerci are approximately three-fourths (3/4) as long as the epiproct and paraprocts.

No. 4 | Ophiogomphus incurvatus | exuvia (anal pyramid)

Photo No. 4 and 5 show ventral views of the exuvia.

No. 5 | Ophiogomphus incurvatus | exuvia (ventral)

The vestigial hamules shown in both photos indicate this individual is a male.

After emergence

The next photograph shows the Appalachian Snaketail dragonfly after emergence from one of Bob Perkins‘ holding tanks. Ophiogomphus incurvatus is 40-43 mm in total length (Paulson, 2011).

Image used with permission from Bob Perkins.

This individual is a male, as indicated by its “indented” hind wings, hamules, and terminal appendages.

Image used with permission from Bob Perkins.

Related Resource

The dichotomous key for Ophiogomphus that appears on pp. 261-262 in Dragonflies of North America, Third Edition by Needham et al. was used to attempt to verify the genus and species of the exuvia. Markers that match this specimen are highlighted in boldface green text. Three boldface green asterisks (***) are used to highlight the thread for identification of O. incurvatus. Disclaimers are highlighted in boldface red text.

p. 261

1. Abdomen without lateral spines or dorsal hooks; antennal segment 4 minute, much narrower than segment 3. [howei]
***1’. Lateral spines present on abdominal segments 6 or 7-9; dorsal hooks usually well developed, if vestigial then antennal segment 4 more than 1/2 as wide as segment 3. [2]

2(1’). Antennal segment 4 more than 1/2 as wide as segment 3 (Fig. 319a); dorsal hooks on abdominal segments 2-9 low and blunt, or vestigial. [3]
***2’. Antennal segment 4 minute, much less than 1/2 as wide as segment 3; dorsal hooks normally prominent, usually hook-like, on at least some of abdominal segments 2-9 (sometimes low in O. carolus). [4]

p. 262

4(2’). Lateral spines on abdominal segments 6-9 (Fig. 323d). [5]
***4’. Lateral spines on abdominal segments 7-9 only. [6]

***6(4’). Dorsal hooks on abdominal segments 2-4 in lateral view usually less than 2/3 as high (measured from lowest point at intersegmental margin) as dorsal length of their respective tergites (along sclerotized, granulated cuticle only), in dorsal view with obtuse apices not extending backward beyond posterior border of tergite (Fig. 322a). [7*]
6’. Dorsal hooks on abdominal segments 2-4 in lateral view 2/3 as high, or more, (measured as above) as dorsal length of their respective tergites, in dorsal view with acute apices extending backward beyond posterior border of tergite (not beyond smooth intersegmental membrane; Fig. 322e). [14*]

***7(6). Antennal segment 3 not more than twice as long as wide. [8**]
7’. Antennal segment 3 is 2.3 to 3.0 times as long as wide. [10**]

***8(7). Antennal segment 3 is 1.7 to 1.8 times as long as wide; dorsal abdominal hooks highest and subequal on segments 2 or 3 to 4 or 5. [incurvatus**]
8’. Antennal segment 3 is 1.8 to 2.0 times as long as wide; dorsal abdominal hooks highest and subequal on segments 2 and 3 (Fig. 322a). [9**]


* Interpretation of this couplet in some individual cases may be ambiguous; if in doubt try both choices.
** Separation based on antennal measurements may be difficult in practice. Careful attention to shape of antennal segments (Fig. 319) should also help.

Tech Tips

The following equipment was used to shoot Photo No. 2, 3, and 5: Canon EOS 5D Mark II digital camera, in manual mode; Kenko 20mm macro automatic extension tubeCanon EF100mm f/2.8L Macro lens (set for manual focus); Canon MT-26EX-RT Macro Twin Lite set for “Master” mode, and Canon 580 EX- and Canon 580EX II Speedlites set for “Slave” mode. Photo No. 1, 4, and 6Canon MP-E 65mm Macro lens (manual focus only, set for 2x magnification) plus the multiple-flash setup.

Adobe Photoshop CC 2017 was used to annotate Photo No. 1-6Photo No. 2, 4, 5, and 6 are focus-stacked composite images.

Bob Perkins’ photos were shot using a Canon EOS Rebel T3i camera body and Canon EF-S 60mm macro lens.

Copyright © 2018 Walter Sanford. All rights reserved.


%d bloggers like this: