Archive for the ‘Altura flash modifier’ Category

Alice in Telecentricity Land (plus Post Update)

August 4, 2023

In a recent blog post, I wrote …

The best advantage of a truly telecentric lens is there should be little or no “focus breathing” as the camera moves closer to/farther from the subject. Essentially that means the apparent size of the subject should remain the same. That should enable better focus stacking because the outline of the subject is constant. Source Credit: Experimenting with a telecentric lens rig (plus Post Update).

Using my clone of Rik Littlefield’s 0.8x magnification telecentric lens rig, there was little or no “focus breathing” in the test focus bracket that I created from 63 JPGs, as shown in the following slideshow.

First, a brief explanation of what is shown in the slideshow. The first frame is Photo No. 1 of 63 from the focus bracket, edited to make it black and white. The last frame in the slideshow is Photo No. 63 of 63, shown in full color.

I loaded the two photos as a stack in Photoshop. Next I changed the opacity of the last image in the slideshow to 0%, meaning the first image, now black and white, is shown completely. Then I flattened the layers and saved the output. I repeated the process, changing the opacity of the last image to 25%, 50%, 75%, and 100%. At an opacity of 100% the last image is shown completely and the first image cannot be seen.

This slideshow requires JavaScript.

Look closely at the slideshow and you might notice the subject shifts slightly to the right (from first to last slide), but nothing like the “focus breathing” that typically occurs when a non-telecentric lens is used to do focus bracketing. This means the photo composition that I saw in the first photograph is essentially the same in the last photo.

The following photo gallery features full-size versions of the same images used to create the slideshow, in order of increasing opacity.

Let’s pause to review. We know the subject should appear to be larger when the camera moves closer to the subject. But in this case, the subject appears to be the same size in both the first and last shots of the focus bracket. Why? Well, this is the point where I might be beyond the limit of my expertise but based upon my understanding of telecentricity I’d say it’s because most of the light rays that pass through the lens rig are parallel.

Things are getting curiouser and curiouser

If my [educated?] guess is true, then parallel lines in a subject should remain parallel from foreground to background.

Let’s start with a thought experiment. Think about a pair of parallel railroad tracks. Many, if not most people have noticed that railroad tracks appear to converge toward a vanishing point in the distance. The same thing happens when you photograph parallel lines. Or does it? Not when a truly telecentric lens is used to shoot the photograph! Let’s look at an example.

I didn’t have time to shoot and post process an entire focus bracket of a small plastic ruler, so I shot two quick and dirty photos near the end points of the ruler. The first photo shows the foreground; the last photo shows the background.

I could have used Photoshop to edit the images so that the vertical blue lines are aligned, but I didn’t because I decided it’s more important to show another example that illustrates lack of “focus breathing.” Plus I think it’s easy to see at a glance the lines are in fact parallel, not convergent.

Yeah, yeah — I could have and should have done a better job of posing the ruler but like I said, the photos are quick and dirty. Expediency trumps perfectionism.

Post Update

Consistent with the “quick and dirty” theme for this post, I used Apple Preview to edit the preceding photos of a small plastic ruler.

I started with the first photo. I drew a horizontal red line between two vertical blue lines on the ruler. Next, I selected and copied a small area from the bottom of the photo.

Finally, I pasted the selected/copied area from the first photo onto the second photo. As you can see the vertical blues lines are virtually the same distance apart at both ends of the ruler. Therefore my Rube Goldberg lens rig is almost perfectly telecentric.

Related Resources

Copyright © 2023 Walter Sanford. All rights reserved.

Telecentric lens rig revisited

August 1, 2023

The following composite images show the results of my first test using a new telecentric lens rig, cloned from a similar rig designed by Rik Littlefield.

Helicon Focus was used to focus stack 63 “as is” JPGs from my Fujifilm X-T3 mirrorless digital camera (focused on the head only). “As is” is a descriptor that I use often in my photoblog, but that doesn’t mean the images weren’t edited — rather it means the JPGs were edited in camera using one of the Fujifilm film simulations (PROVIA / STANDARD).

63 JPGs | Helicon Focus | Rendering Method B

In my limited experience using Helicon Focus, rendering Method C seems to work better than Method B. (For what it’s worth, rendering Method A never produces good results for me.) In this case, I can’t see a clear difference in the quality of the output. Do you think one version looks better than the other?

63 JPGs | Helicon Focus | Rendering Method C

Look closely at the full-size versions of the preceding composite images and I think you will agree with me that the image quality is excellent!

Tech Tips

In a recent blog post, I wrote …

Rik [Littlefield] developed another telecentric lens rig that results in lower magnification (0.8x versus 1.69x) but better image quality. I need to order some inexpensive parts before I can build and test that rig. Source Credit: Experimenting with a telecentric lens rig (plus Post Update).

The last part I needed was delivered a few days ago, and much to my amazement all of the parts fit together! (See parts list, below.)

I used my Apple iPad mini 6 to shoot the following quick-and-dirty photos of the new telecentric lens rig.

Here’s a parts list (shown from left-to-right in the preceding photos).

  • Fujifilm X-T3 (APS-C) mirrorless digital camera [not shown]
  • Fringer EF-FX Pro II
  • [1] Canon EF 100mm f/2.8 Macro lens
  • [2] 67mm to 52mm step-down ring
  • [3] M52-M42 step-down ring
  • [4] Fotasy M42-M42 helicoid [15-26 mm long (11 mm travel).]
  • [5] M42 tube (7 mm long) [WeMacro 42mm tube set: 7, 14, 28 mm long.]
  • [6] 42mm to 52mm step-up ring
  • [7] 52mm-43mm step-down ring
  • [8] Raynox DCR-250 close-up filter (43mm thread)

Notice the focus ring on my Canon Macro lens is set for infinity [highlighted by a green rectangle]. The distance between the front of the Canon lens and front of the Raynox close-up filter is ~54 mm, based upon guidance from Rik Littlefield.

With the Canon Macro lens set for infinity, the parts in front of the Canon lens work together with the lens to make it telecentric. Adding the Fringer adapter has no effect on the telecentricity of the Canon lens — it’s only used to enable my Canon lens to work with the Fujifilm X-T3 camera.

Safe step size

I used Rik Littlefield’s excellent DOF Calculator plus personal guidance from Rik to determine the safe step size to use for focus bracketing with the new telecentric lens rig.

My input is highlighted by a red rectangle; the calculator output is highlighted in green.

Notice I input a 20% step overlap (0.2) to be sure there was no “focus banding.” The calculator suggested a step size of 0.17589 mm. That’s equivalent to 175.89 µm (micrometers).

Since the smallest increment on my NiSi NM-200 manual focus rail is 10 µm, I divided 175.89 by 10 in order to determine the number of increments to turn the larger adjustment knob on the NM-200. The answer is 17.589 increments. For simplicity and safety, I turned the knob 15 increments between shots.

Copyright © 2023 Walter Sanford. All rights reserved.

Experimenting with a telecentric lens rig (plus Post Update)

July 11, 2023

I’ve been experimenting with a telecentric lens rig. My rig is cloned from a similar one created by Rik Littlefield, using gear I already own.

I’m guessing you’re thinking “What is a telecentric lens?” The honest answer is “I don’t know.” I’m not sure I’ll ever understand what telecentric lenses are and how they work. I’m hoping practical experience will result in better understanding of the theoretical.

So why have I written a blog post about a topic I don’t really understand? Good question! The simple answer is because I have learned enough, mostly from Rik Littlefield, to know there are practical advantages to using a telecentric lens for macro photography.

The best advantage of a truly telecentric lens is there should be little or no “focus breathing” as the camera moves closer to/farther from the subject. Essentially that means the apparent size of the subject should remain the same. That should enable better focus stacking because the outline of the subject is constant.

My Rube Goldberg telecentric lens rig

Rik Littlefield’s telecentric lens rig features the same gear as mine (described in the next paragraph) minus the Canon-to-Fujifilm lens adapter because he uses a Canon EOS Rebel T1i DSLR camera body with his rig.

My Rube Goldberg telecentric lens rig is cobbled together using a Raynox DCR-250 close-up filter attached to my Canon EF 100mm macro lens using the plastic clip-on adapter supplied by Raynox. The lens assembly is mounted on my Fujifilm X-T3 APS-C digital camera using a Fringer EF-FX Pro II adapter.

Rik developed another telecentric lens rig that results in lower magnification (0.8x versus 1.69x) but better image quality. I need to order some inexpensive parts before I can build and test that rig.

Testing 1, 2, 3.

The following closely-cropped composite image shows the result of my first test of the telecentric lens rig.

I shot 57 images of a toy plastic lizard using my NiSi NM-200 manual focus rail. I used an aperture of f/8 and a step-size of 100 microns, as recommended by Rik Littlefield.

Helcion Focus Method B was used to focus stack the “as is” JPGs from my camera. The resulting TIF file was cropped using Apple “Preview” — that’s about as quick and dirty as cropping gets!

Post Update

The first time I heard about telecentric lenses is when Allan Walls teased the topic during one of his YouTube live-streams. During a subsequent live-stream, Allan demonstrated how to make a lens telecentric using a rig similar to one that Rik Littlefield created.

Telecentric Lenses – Macro Talk Too – from Allan Walls Photography, June 29, 2023 (1:12:10)

Allan’s YouTube live-streams are one hour in duration, but there’s usually a lot of chit-chat during a typical live-stream that might not interest readers of my blog.

In this case, I recommend that you watch the segment from 11:22 to 30:21. A lot of what I have learned about telecentric lenses from Rik Littlefield and Allan Walls is covered during that part of the video. (If you continue watching the video beyond the 30:21 mark, then you will hear my name mentioned twice.)

Copyright © 2023 Walter Sanford. All rights reserved.

Sometimes you get what you pay for.

June 13, 2023

I love me some Manfrotto clamps and articulating arms. But — and it’s a big but — two points diminish my enthusiasm for Manfrotto gear.

First and foremost, in my strong opinion many (if not all) Manfrotto products are way overpriced.

Second, Manfrotto seems to be obsessed with slathering many of their products with excessive amounts of grease and lubricants. Almost every Manfrotto product I have purchased required a thorough cleaning before I felt comfortable using it with my cameras and lenses.

SmallRig

On the strength of a rave recommendation from a trusted source (henceforth known as a “usually trusted source”) I bought some clamps and articulating arms made by a company called “SmallRig.”

The price is definitely right and their products work as advertised. I would call SmallRig clamps and articulating arms “less greasy” than comparable Manfrotto gear, but some clean-up is still required before use.

Initially I was pleased with the build quality of the SmallRig clamps and articulating arms. Over time I noticed some of the gear I bought has started to fall apart.

For example, notice the rubber pad on the inside of the jaws of one of my SmallRig Super Clamps has peeled away from the metal.

And the rubber gasket on one end of a small articulating arm has peeled away from the metal. I noticed the problem when a blob of what appeared to be rubber cement got on my fingers when I was setting up external flash units for a photo shoot.

What are the take-aways?

Do the products still work? Yes, I guess they do although I must admit my confidence in the brand is gone.

Anyone who knows me well knows I am very gentle with my photography gear so it cannot be said these products are failing due to abuse. Not to belabor the point, but if I should decide to sell any of my equipment then you should buy it STAT because every used item would be fairly rated as “pristine.”

As a service to my fellow photography enthusiasts I am issuing a “Do Not Buy” advisory for SmallRig clamps and articulating arms.

Related Resources

Copyright © 2023 Walter Sanford. All rights reserved.

“Magic Mylar” Moonlight

June 6, 2023

In a recent blog post entitled “Magic Mylar” diffusion material (plus Post Update), I shared the results my initial experimentation with a new material for light diffusion. Since then I added more mylar for multiple layers of diffusion and I must say I’m liking the results!

Toy dinosaur.

I used single point focus, positioned over the eye of the dinosaur. See why it’s necessary to use focus bracketing/focus stacking?

By now, some of you might be tired of looking at my toy dinosaur. That’s OK, he has thick skin [Get it?] and can withstand a little good natured griping. But seriously, he’s the perfect model for testing light diffusers due to the highly reflective plastic of which he is made.

“Magic Mylar” — where it all began

A friend and expert in macro photography kindly shared several sheets of diffusion material with which he is getting great results. The material is made of mylar plastic, matte on both sides.

Tunnel of Light II

I created a variation of my friend’s “Tunnel of Light.” Using my set-up, the mylar is almost perfectly round and surprisingly rigid.

Tunnel of Light (front/side view). Don’t mind the background clutter!

A single sheet of mylar is clamped to the white plastic top from a big jug of pretzels. The round top is ~4.5″ in diameter.

The jar top is held in place by a Wemberley The Plamp II. At a price point of $49.00, I don’t recommend buying a Plamp in order to make your “Tunnel of Light” — I just happened to have one on-hand and it does the job. I’m sure you can find a suitable clamp using off-the-shelf materials.

Tunnel of Light (rear/side view).

Three Impact ABS 3.75″ Small Spring Clamps (6-Pack) are used to hold the mylar in place. The orange “pivoting nylon pads for uneven surfaces” snap on/off, and as you might expect, tend to snap off at the worst times! For that reason, I DO NOT recommend these clamps. The price was right [$5.40] but you can’t count on them to perform in a pinch without fail. [See what I did there?]

I’m thinking about replacing the white plastic jar top with a PVC pipe fitting, the advantage being it would support the mylar while allowing a view of interchangeable backgrounds through the tunnel of light.

“Magic Mylar” everywhere …

How I got the shot

The toy dinosaur was placed inside the “Tunnel of Light II.” Two small LED light panels were used to light the scene for both setting exposure and focusing. Two external flash units were added for “pop.” All of the light sources were diffused with “Magic Mylar” plus one or more additional light diffusers such as the Altura flash modifier, shown in the preceding photo.

The goal is to use several light sources, set for low power, that add up to nice soft light that’s both bright and relatively free of specular highlights. Looks like I’m on the right track.

Copyright © 2023 Walter Sanford. All rights reserved.

When dinosaurs attack!

May 30, 2023

Run for your life!

Toy dinosaur.

The preceding composite image was created using Helicon Focus to focus stack 99 JPG photos taken automatically using my Fujifilm X-T5 set for AUTO FOCUS BKT. The composite image was created using unedited JPGs straight out of the camera.

When you use AUTO FOCUS BKT, you select two endpoints for your focus bracket (Point A and Point B) and the camera sets the step size between shots automatically.

If your goal is to create a composite image with the subject entirely in focus, here’s a helpful tip. As you are looking through the camera viewfinder, or in my case looking at the LCD on the back of the camera, it can be difficult to be sure which point on the subject is closest to the front of the lens and which point is farthest.

For example, looking at the composite image shown above, can you be certain one of the toy dinosaur’s legs doesn’t extend in front of it’s nose? I couldn’t. So what should you do before starting the photo shoot?

I think it’s helpful to look at the subject perpendicular to the camera/lens line of sight, as shown below. In this straightforward example the nearest and farthest points on the subject are obvious — Point A is the tip of the dinosaur’s nose and Point B is the tip of it’s tail. This tip should be useful for subjects that are more complex than my toy dinosaur.

Toy dinosaur (side view).

For what it’s worth, the preceding photograph was taken using my Apple iPad mini 2.

Tech Tips

“Rendering” Method C in Helicon Focus worked best for this subject/composition, but it didn’t work perfectly. There was one artifact that doesn’t appear in any of the 99 focus bracketed photos used to create this composite image, so I knew that in-camera focus bracketing was working properly in my Fujifilm X-T5.

I used “Retouching” to fix the artifact. This was the first time I have used the retouching tools in Helicon Focus. I must admit the experience wasn’t as painful as I was led to believe, but it took a little experimentation to figure out the process.

At this point, I feel like I don’t have enough experience to share directions for how I removed the artifact. But I did take notes so I can refine the process and you can be sure I’ll do a follow-up blog post related to retouching as soon as I don’t feel as lost as I did this this time!

Copyright © 2023 Walter Sanford. All rights reserved.

“Magic Mylar” diffusion material (plus Post Update)

May 19, 2023

So there I was, working on the next epic sundial-related blog post, when I realized two things: 1) The post needs to be too long to finish before Friday; and 2) The topic probably needs to be covered in a series of posts rather than one long post. Regrettable, because WordPress site statistics shows the sundial-related blog posts are popular with readers of my blog. Anyway, please stay tuned — I hope to finish the next post by Tuesday, 23 May 2023.

In the meantime, I decided to give you a quick update on my never-ending quest for good light diffusers.

“Magic Mylar”

A friend and expert in macro photography kindly shared several sheets of diffusion material with which he is getting great results. The material is made of mylar plastic, matte on both sides.

I should have taken some shots of the same subject with- and without diffused light, but I didn’t have time to do a proper test of the new diffusion material. Qualitatively speaking, I like the look and feel of the test shots in diffused light although I concede there are specular highlights that might require either double- or triple layers of diffusion, as recommended by my friend.

Here are a few shots from a quick studio session. The subject is a highly reflective plastic toy dinosaur. I used a small LED light panel (with added diffusion to supplement the built-in diffuser on the LED) and a Godox TT685C plus a small Altura flash modifier to light the scene. The output from the LED light panel is assumed to be constant, while I slightly increased the distance between the subject and the TT685C from the first to last shot. I estimate the front of the Altura was no more than say 5″ to 7″ from the subject. My assumption is the farther the TT685 was from the subject, the more the LED was the dominant light source.

Closest.

Mid-range.

Farthest.

Where can I get some “Magic Mylar?”

I don’t know whether the results of my test are so impressive that you would like to order some of the “Magic Mylar” STAT. The following image shows the label from a big roll of the mylar.

Comstoc Ink Jet Plotter Media | 3 MIL Double Matte

It’s unclear whether this specific product is discontinued. One source says the art supplier Dick Blick sells sheets of similar material. I will do some research and report my findings, if any. Please comment on this post if you find a source before I do.

Tech Tips

Disclaimer: The following photos show no evidence that I’m actually a fairly good photographer.

Here are two quick-and-dirty shots (taken with my Apple iPad mini 6) that show how I used the mylar to diffuse light from a Sunpak LED 160 light panel. I simply taped an ~8.5″ x 11″ sheet of the mylar to the LED. The first photo shows the LED off; the second shows the LED on.

Sunpak LED 160 light panel. (Off.)

Sunpak LED 160 light panel. (On.)

Looks like I didn’t place the subject at the center of the circle of light. In my defense, the circle of light wasn’t as apparent to me as it is in the photo. Hey, I told you it was a quick-and-dirty test!

More later after further testing.

Post Update

I’m a scientist. No really, I am. I know it’s easier to analyze the results of an experiment that has only one variable. My last experiment included another variable that made it impossible to objectively evaluate the quality of light diffused by adding “Magic Mylar” to a small LED panel.

So I ditched the Godox TT685C external flash unit and photographed the subject using only diffused light from the LED panel.

All photos were taken using my Apple iPad mini 2. Same subject, same “stage.” Notice the subject is closer to the center of the circle of light on the background.

Next I moved the iPad closer to the subject for a better look at the specular highlights, if any.

Finally, here’s the same shot cropped for a closer look at the subject. The white balance is way off, but hey, it’s an iPad camera photo! Otherwise the light has what I would describe as a “warm glow” with fewer glaring specular highlights than the shots from the first test. Maybe now you can see why I am excited by the results of my experimentation with the new mylar diffusion material.

Perhaps you’re wondering, “Why was it necessary to use an external flash unit when you took the first test shots?” I used my Fujifilm X-T5 and 80mm macro lens to take those shots. I wanted to use the same settings that I’ve been using for studio macro focus bracketing. Problem is, the photos were underexposed. Since I didn’t want to change the camera/lens settings, my only option was to add more light. And now you know the rest of the story.

Copyright © 2023 Walter Sanford. All rights reserved.

I love it when a plan comes together!

April 21, 2023

Do you remember The A-Team, a classic 1980s TV show? One of Colonel John “Hannibal” Smith’s catch phrases was “I love it when a plan comes together!” So do I.

In my last blog post, I wrote the following …

Look closely and you should notice a few places that appear to be artifacts resulting from the focus stacking process. (Look around the borderline between the toy dinosaur and NSTA plastic ruler.) … I must admit this is cause for concern. Source Credit: More testing, AUTO FOCUS BKT, by Walter Sanford.

Could you tell I was more than a little discouraged by the discovery of artifacts in my focus-stacked composite images? I was. So I devised a plan for isolating the cause of the problem and finding a solution.

The plan

First I looked at the source images for the composite images. I didn’t see the same artifacts in any of the JPG files used to create the focus stacks, so I knew that in-camera focus bracketing was working properly in my Fujifilm X-T5.

Next I re-rendered (is that a word?) the source images using Helicon Focus Method A and Method C. My hypothesis, based upon limited experience and knowledge gained by following the “Focus stacking – Helicon Focus” Facebook group, was that rendering Method C would work without creating artifacts.

Turns out I was right. Look closely at the full-size version of the following focus-stacked composite image and you should see the artifacts are gone. And that’s a good thing, because as far as I can tell using the retouching tools in Helicon Focus means “you’re entering a world of pain.” (Source Credit: John Goodman as Walter Sobchak in “The Big Lebowski.”)

Toy dinosaur focus stack: two flashes; 74 frames; rendering Method C.

Buoyed by my success with re-rendering the source images for the composite image of a toy dinosaur, I used Method C to re-render the source images for the composite image of a toy lizard. Same result: Artifact problem solved!

Toy lizard focus stack: one flash; 96 frames; rendering Method C.

So now both composite images are tack-sharp from front-to-back and artifact-free. Yep, I love it when a plan comes together! And looking at the bigger picture, now I know for sure that Fujifilm in-camera AUTO FOCUS BKT works as I hoped and works well. That’s a win-win!

Why do we focus stack?

The composite image of the toy dinosaur, shown above, was created using 74 unedited JPGs straight out of my Fujifilm X-T5 digital camera. All of the photos were shot using an aperture of f/11.

The following slideshow was created using the first, middle, and last photos in the set (frames 01, 37, and 74). The focus point moves from the tip of the head, to somewhere along the body of the toy dino, and to the tip of its tail. In each of the photos, notice how little of the toy and ruler are acceptably in focus — even at a relatively small aperture of f/11. And that, ladies and gentlemen, is why we focus stack!

This slideshow requires JavaScript.

Related Resources

Copyright © 2023 Walter Sanford. All rights reserved.

More testing, AUTO FOCUS BKT (plus Post Update)

April 18, 2023

Someone I know is fond of saying “A sample size of one proves nothing.” And that’s true, at least in the case of my recent test of Fujifilm AUTO FOCUS BKT. So I refined my step-by-step instructions slightly and tested the process again. Two times, in fact. And the results are comparable to my first test.

I have learned from experience it’s better to use a rugged toy “model” for testing purposes, rather than one of the fragile odonate exuviae that I like to photograph. It’s a good idea to choose a test subject that’s about the same size as your intended subject. The following toy dinosaur is ~6 cm from head to tail — the same size as the largest specimen in my collection of exuviae.

Two flashes

The following composite image was created using Helicon Focus to focus stack 74 JPG photos taken automatically using my Fujifilm X-T5 set for AUTO FOCUS BKT. The composite image was created using unedited JPGs straight out of the camera.

Toy dinosaur plus NSTA plastic ruler.

As you can see, both the toy dinosaur and NSTA plastic ruler are in focus from front-to-back without any focus banding. Zoom in to look at the full-size composite image — the detail is impressive!

Look closely and you should notice a few places that appear to be artifacts resulting from the focus stacking process. (Look around the borderline between the toy dinosaur and NSTA plastic ruler.)

I used rendering Method B in Helicon Focus. Time permitting, I would like to try Method A and Method C to see whether the artifacts go away. The artifacts are visible in both the “Two flashes” and “One flash” versions of the composite image, and upon further review, also visible in the composite image of the toy lizard featured in my last blog post. I must admit this is cause for concern.

Post Update: I used Helicon Focus rendering Method A and Method C to re-render the composite images: Method A was better than Method B; Method C nailed it! For details, please see my blog post entitled “I love it when a plan comes together!

One flash

The setup for the “one flash” photo shoot was exactly the same as the “two flashes” version except I used one fewer external flash unit.

The following composite image has higher contrast than the first. Although I like the look, I was curious to see how adding a second flash would affect the final result.

Toy dinosaur plus NSTA plastic ruler.

I’m still undecided about which version I like more, but the order in which they are presented in this post provides a big hint. Which version do you prefer — is less more?

Related Resources

Copyright © 2023 Walter Sanford. All rights reserved.

Making progress (on a steep learning curve)

March 17, 2023

OK, let me say right at the outset that using a manual focus rail like my new-ish NiSi NM-200 to create a 328-photo focus stack is insane! So I regrouped, made a new plan, and conducted some tests.

I discovered, albeit too late, that I needed to shoot a lot of  photos for my last focus stack because I chose to use an aperture of f/8 and the “safe step size” for f/8 (at 1x magnification) is 40 µm (micrometers, or microns) — a relatively small step size.

In contrast, at 1x magnification the safe step size for f/11 is 800 µm — during limited testing that seems to be the sweet spot for creating focus stacks that look fairly good using fewer photos.

Canon EOD 5D Mark II DSLR camera plus Canon EF 100mm macro lens (1x, f/11)

The following composite image was created from 20 photos.

The background is the non-reflective side of a piece of black plastic. It’s textured surface appears to be a bad fit for macro photography — notice lots of little white specks on the background. Not good.

f/11 | 1/200 s | ISO 100 | Manual WB (Flash)

But wait, there’s one more thing. Did you notice the copper penny hiding underneath the quarter? Well, it was supposed to be hiding. I borrowed the idea from another photographer whose name I can’t remember. The point is to create some visual relief for the coin in the photo. The plan might have turned out OK if I’d noticed the misalignment of the penny before I did the focus bracketing.

Fujifilm X-T5 mirrorless digital camera plus Fujinon 80mm macro lens (1x, f/11)

The following composite image was created from 26 photos.

For the background, I used the white reference card from a Vello White Balance Card Set (Small). I set the white balance for AUTO WHITE PRIORITY WBW — a new setting (at least new to me) that’s supposed to result in whiter whites.

f/11 | 1/250 s | ISO 125 | WBW

The subject is in focus from back-to-front, and I like the white background. I think this is the best composite image I’ve created so far, but as always, you be the judge.

Fujifilm X-T5 mirrorless digital camera plus Fujinon 80mm macro lens (1x, f/11)

The following composite image was created from 21 photos.

For the background, I used the black reference card from a Vello White Balance Card Set (Small). I think it looks better than the textured black plastic background in the first photo, although I think the white background looks best.

f/11 | 1/250 s | ISO 125 | WBW

Pixel-peepers will notice the far end of the nickel isn’t as sharp as the rest of the coin. That’s because a man-caused disaster forced me to leave out the first two photos in the set. I hope the man responsible for this sloppy work will be held accountable for his actions!

Tech Tips

I think it’s worth noting that all three composite images were created using unedited JPGs straight out of the camera. All of the composite images could have been improved by making a few edits to the RAW files such as adjusting exposure, increasing contrast, and adding a little sharpening, to name a few.

In these test cases, I was looking for focus banding caused by using a step size that’s too big and glitches caused by Helicon Focus, the focus stacking software I used. As far as I can see, no problems.

My NiSi NM-200 is mounted on a Manfrotto 405 3-Way, Geared Pan-and-Tilt Head. The camera line of sight was inclined at a 45° angle relative to the staging surface. That’s less important in this case and more important for an upcoming review of the NiSi NM-200 focus rail.

Both cameras were set for manual exposure. Both lenses were set for manual focus; the combination of manual focus and back-button [auto]focus gives me the best of both worlds.

I use single point focus nearly all the time. I moved the focus point to the farthest point of each subject, then used back-button focus to autofocus on the subject and shoot a photo. Without changing focus from the first photo, I used the focus rail to move across the subject from back-to-front in 800 µm increments (eight numbered increments on the NiSi larger adjustment knob), taking a photo at each step.

More light is required for proper exposure at f/11 than f/8. I used one Sunpak LED-160, one Godox TT685C external flash unit (plus Altura flash modifier), and one Godox MF-12 external flash to light the first subject (Virginia quarter). Two Sunpak-160s and two Godox TT685C external flash units (using Altura and Lastolite flash modifiers) were used to light the last two subjects (quarter and nickel coins).

Related Resources

Copyright © 2023 Walter Sanford. All rights reserved.