Archive for the ‘Godox XProF’ Category

5x magnification

October 14, 2022

What does 5x magnification look like?

The following photos are test shots that were taken using an AmScope 4x microscope objective mounted on my Fujifilm X-T3 digital camera with a plastic lens adapter designed and 3-D printed by Nicholas Sherlock. The actual magnification of the “lens” is between 4x and 5x due to the design of the adapter. The aperture of the lens is fixed, somewhere between f/4 and f/5.

All of the photos …

  • were shot handheld (not recommended for this camera rig), except for the last two that were shot using a tripod. A single external flash unit was used to light each photo.
  • are “one-offs,” meaning they aren’t focus-stacked. At a magnification of 5x the depth of field is extremely shallow. The net result is little of each photo will appear to be acceptably in focus.
  • are “full frame” (6240 × 4160 pixels), meaning they are uncropped.
  • are unedited JPG files, straight out of the camera.

The first photo shows a small part of a “granite” countertop. The word granite appears in quotes because the countertop might be made of some type of synthetic material.

The next photo shows the left eye of the “Made in the Shade” toy monkey, one of my favorite studio models.

The following photo shows part of a Metro SmartTrip fare card.

The next two photos show a penny, that is, a 1-cent coin in U.S. currency.

The next photo shows the last two digits of a 1996 quarter, that is, a 25-cent coin in U.S. currency.

The last two photos show part of an exuvia from Family Calopterygidae (Broad-winged Damselflies). The ventral side of the head is shown in both photos. The first photo is focused on the eye; the second photo is focused on the prementum.

The specimen was collected by Cindy Haddon Andrews on 03 September 2022 along the James River, near the Maidens Boat Landing in Powhatan County, Virginia USA.

Tech Tips

I talked about “manual” and “automatic” lens adapters in my last blog post. In order to use a manual lens adapter such as either my Laowa EOS-FX or the plastic adapter designed by Nick Sherlock, my Fujifilm X-T3 digital camera must be set so that “Shoot Without Lens” is on. This enables shutter release when the camera “thinks” no lens is attached.

Press the “Menu/OK” button / select SET UP (wrench icon located in the left sidebar) / choose BUTTON/DIAL SETTING / select SHOOT WITHOUT LENS (ON).

Copyright © 2022 Walter Sanford. All rights reserved.

Iberian odonate larvae

September 16, 2022

During late-October 2021, I was contacted by Miguel A. Conesa-García, PhD, Profesor Tutor Biología, Diversidad Animal, Ciencias Ambientales, UNED-Málaga.

Miguel was working on finishing the second edition of his book about odonate larvae in the Iberian Peninsula (Spain and Portugal). When Miguel was almost finished, an adult male Wandering Glider dragonfly (Pantala flavescens) was spotted in Spain. P. flavescens is a new species of odonate for the region, so Miguel decided to add the new discovery to the species list in his book.

Cover photo, courtesy Amazon Books.

The following screen capture shows the search string I used to find the book on Amazon.

Screen capture, Amazon Books.

The book is richly illustrated with beautiful photos and diagrams. It’s abundantly evident I could learn a lot from the book — I wish there were an English Edition!

Miguel requested permission to use a photo of a Wandering Glider exuvia in my photoblog, published on 14 November 2018. I was, of course, willing to help.

Page excerpt from Miguel’s book, featuring my photo.

I’m mentioned in the acknowledgements at the end of the book. Regrettably my first name is misspelled and the Web address cited is no longer current. I took the liberty of annotating the page from Miguel’s book to provide the correct information.

Acknowledgements, p. 539 (annotated).

Acknowledgements, p. 539 (original).

Migratory Dragonflies

Wandering Glider is one of at least five major species of dragonflies known to be migratory in North America. P. flavescens is the only species of odonate known to occur on every continent except Antarctica.

The exuvia that I photographed is the “cast skin” from an odonate larva (nymph) that was collected in the field by Andy Davidson, a graduate student at Virginia Commonwealth University in Richmond, Virginia USA. Andy reared the larva in the laboratory as part of a research project entitled “Predator-Prey Interactions in a Changing World.”

Part of the value in rearing odonate larvae in the laboratory is knowing with certainty that an exuvia is from a particular species. This is perhaps the reason that Miguel chose to use my photo.

Related Resources

Copyright © 2022 Walter Sanford. All rights reserved.

Fujifilm/Fringer/Canon MP-E 65mm macro lens

September 9, 2022

In a recent blog post I mentioned that I was looking forward to testing the Fringer EF-FX Pro II lens mount adapter with my Canon MP-E 65mm Macro lens.

The MP-E 65mm doesn’t have a ring for focusing on the subject — you set the magnification ratio (from 1x to 5x) and move the camera/lens rig back and forth until the subject is in focus. For all photos, I focused on one eye of the model.


The first studio model is a toy Dimetron, photographed at a magnification ratio of 1:1. The toy is ~3.6 cm (~36 mm) long. The size of the APS-C sensor in the Fujifilm X-T3 is 23.5 mm x 15.6 mm. At 1x magnification, the entire length of the toy doesn’t fit on screen.

Dimetron toy | 1:1 magnification | 1/16 flash power ratio

With the camera/lens set for the same f/stop, shutter speed, and ISO (f/5.6, 1/250 s, and 400, respectively), less light reached the sensor when the magnification ratio was increased from 1:1 to 2:1. So I increased the flash power ratio by one stop, from 1/16 power to 1/8 power.

Dimetron toy | 2:1 magnification | 1/8 flash power ratio


The last studio model is a toy Triceratops, photographed at a magnification ratio of 1:1. The toy is ~4.3 cm (~43 mm) long.

Triceratops toy | 1x magnification | 1/16 flash power ratio

As with the first model, when the magnification ratio was increased from 1:1 to 2:1 it was necessary to increase the flash power ratio by one stop.

Triceratops toy | 2x magnification | 1/8 flash power ratio

Gear Talk

The Fringer EF-FX Pro II lens mount adapter enables one to mount Canon lenses on Fujifilm X-Series digital cameras. As you can see, my Canon MP-E 65mm macro lens works well with the Fujifilm X-T3 camera.

The APS-C sensor inside the Fujifilm X-T3 digital camera has a crop factor of 1.5x, so the Canon MP-E 65mm macro lens has a focal length of ~98mm (35mm equivalent) when mounted on an X-T3. The net result is an increase in apparent magnification, …

Post Update Update

Just because something looks like a duck and seems to act like a duck doesn’t mean it’s a duck. And so it is with the Fringer EF-FX Pro II lens mount adapter — although it looks like an extension tube, it isn’t. Why was I deceived by its appearance? Because I didn’t understand something called “flange focal distance.”

For an interchangeable lens camera, the flange focal distance (FFD) … of a lens mount system is the distance from the mounting flange (the interlocking metal rings on the camera and the rear of the lens) to the film or image sensor plane. This value is different for different camera systems. Source Credit: Flange focal distance. Wikipedia.

For example, the FFD for Canon EF-mount is 44 mm and the FFD for Fujifilm X-mount is 17.7 mm. In order to make a Canon EF lens perform properly on a Fujifilm X-series camera body, an adapter must move the Canon lens 26.3 mm farther from the digital sensor. (44 mm – 17.7 mm = 26.3 mm)

Not surprisingly, when I remeasured the thickness of my Fringer EF-FX Pro II lens mount adapter it turns out to be closer to 26 mm than my original course estimate of 30 mm (cited below). The net result is the 17.7 mm FFD of my Fujifilm X-T3 combines with the 26.3 mm thickness of the Fringer adapter, resulting in an FFD of 44 mm — exactly the right FFD for the Canon lens to work properly on a Fujiflm X-series camera body!

It’s worth noting that “apparent magnification” is still a real thing when a camera lens designed for a “full-frame” camera is mounted on a camera with an APS-C size sensor. The image formed by the lens is exactly the same size regardless of the size of the digital sensor used to record the image, but a smaller part of the image is “seen” by an APS-C sensor than a full-frame sensor, resulting in the misperception that the image is magnified.

I hope this sets the record straight. Sincere apologies for any confusion I might have caused — I never heard of “flange focal distance” before I bought the Fringer adapter!

[Post Update: From this point forward everything I wrote is incorrect. Is my face red, or what? I’ll explain further when I have a chance to use a desktop computer to edit this post.] … although the images appear to be magnified more than can be explained by this fact alone.

In the opinion of this author, the Fringer adapter functions like an extension tube. The adapter is ~3.0 cm (30 mm) in thickness. There aren’t any optics inside the adapter but it does move the lens 30 mm farther from the camera sensor. That, my friends, is an extension tube.

I used an online, interactive Macro Extension Tubes Calculator to estimate the effect of a 30mm extension tube on photos taken with the Canon MP-E 65mm macro lens at magnification ratios of 1:1 and 2:1. The calculator shows the magnification ratio increased from 1:1 to ~1.5:1 and 2:1 to ~2.5:1 respectively.

Macro Extension Tubes Calculator | 1:1 magnification ratio

The values for “new minimum focusing distance” are in millimeters, despite the fact that the second “m” only appears when you click an insertion point in the box and scroll to the right. The values for magnification ratio seem reasonable; the values for new minimum focusing distance, not so much.

Macro Extension Tubes Calculator | 2:1 magnification ratio

[End of segment with information that is incorrect.]

Related Resources

Full-size photos of the preceding studio models are featured in the following blog posts. Those photos should help to give the reader a better sense of how much the subjects were magnified by the Fujifilm/Fringer/Canon MP-E 65mm macro lens rig.

Copyright © 2022 Walter Sanford. All rights reserved.

Fujifilm X-T3: Focus Peak Highlight

September 6, 2022

I like to use manual focus to shoot photographs with my Fujifilm X-T3 digital camera. Set the small dial on the front of the camera to “M.” The beauty of manual focus on Fujifilm X-series cameras is back-button auto-focus still works!

When the small dial is set for “M” both manual focusing and back-button auto-focusing can be used in combination with what Fujifilm calls “Focus Peak Highlight,” or more simply, “focus peaking.”

The following YouTube video by pal2tech explains a technique that makes it much easier to see the focus peaking.

The process is simple. Set the camera to record JPG + RAF [Fujifilm’s proprietary raw format]. Select one of the black-and-white Fujifilm film simulations, e.g., ACROS. [More about Fujifilm film simulations in an upcoming blog post.]

The camera display will be black-and-white. As Chris Lee (pal2tech) explains in the preceding video, it’s much easier to see focus peaking on a black-and-white background.

JPG files saved to a memory card are black-and-white too, as shown below.

Buzz Lightyear plastic toy. [Focus Peak Highlight not shown.]

RAF files are saved in full color, as shown below.

Buzz Lightyear plastic toy.

Tech Tips

“Focus Peak Highlight” can be activated when the camera is set for manual focus mode. Using back-button focus (AF-L button) in manual mode enables one to retain full control of the exposure triangle, focus quickly, and see what’s in focus before shooting a photograph.

Fuji Back Button Focus (4:06), a YouTube video by Ashraf Jandali, provides a clear demonstration of how to use back-button focus on the Fujifilm X-T1. The same technique works with the Fujifilm X-T3.

Related Resources

Copyright © 2022 Walter Sanford. All rights reserved.

Sample photos: Fringer EF-FX Pro II lens mount adapter

September 2, 2022

Oh look, it’s the “Made in the shade” monkey and Buzz Lightyear — two of my favorite studio models! Whenever I need to test new photography gear and/or techniques, they are always willing to help.

As promised in my last blog post, here are a couple of sample photos taken with my Canon EF 100mm macro lens mounted on a Fujifilm X-T3 digital camera body using a Fringer EF-FX Pro II lens mount adapter.

Single point focus was used for both photos. For the first photo, the focus point was located on the monkey’s right eye (bottom eye, relative to the photo). The real world size of the toy monkey is ~4.8 cm long.

“Made in the shade” monkey toy.

The Canon lens is controlled by the Fujifilm digital camera via the Fringer adapter. EXIF information (shown below) is available for each photo. As you can see, the photos in this set were taken using an aperture of f/5.6 and a shutter speed of 1/250 s, the default sync speed for the X-T3.

The “sweet spot” for the Canon EF 100mm macro lens is either f/5.6 or f/8. The depth of field is shallower at f/5.6 than f/8, but I thought the former might be a better test for sharpness than the latter.

Apple Preview | Inspector

Buzz Lightyear reporting for duty, sir. I don’t remember exactly where the focus point was located, but it was probably somewhere near Buzz’s face/head.

Buzz Lightyear plastic toy.

Regular readers of my blog might be happy to know Buzz will be back again for my next blog post.

What are the take-ways?

As you can see, my Canon macro lens works well with the Fujifilm camera. Does it perform better than my Fujinon 80mm macro lens? It’s too early to tell.

The APS-C sensor inside the Fujifilm X-T3 digital camera has a crop factor of 1.5x, so the Canon EF 100mm macro lens has a focal length of 150mm (35mm equivalent) when mounted on an X-T3. The net result is an increase in apparent magnification.

Some of the advantages of mounting the Canon lens on a Fujifim digital camera (rather than my older Canon DSLR camera) are really about features available on the X-T3 that enable me to get more from the same lens.

For example, there are only nine (9) focus points on my Canon EOS 5D Mark II; the Fujifilm X-T3 can be set for either 117 or 425.

The Canon EOS 5D Mark II doesn’t feature focus peaking; the Fujifilm X-T3 does. Focus peaking is a useful aid for focusing the Canon lens manually. More about this topic in my next blog post.

And of course, don’t forget that all of my Canon lenses (including several L-series lenses) can be used with my Fujifilm cameras via the Fringer adapter. I’m especially looking forward to testing the Fringer adapter with my Canon MP-E 65mm Macro lens.

In summary, the Canon/Fringer/Fujifilm rig works as expected. During limited testing, I discovered something that doesn’t work. (Again, more about this topic in an upcoming blog post.) The problem isn’t a deal-breaker and it should be something that can be fixed in a firmware update of the Fringer adapter. Editor’s Note: I just contacted Fringer as of this writing. I’m interested to see whether they are receptive to customer suggestions for improvement. I’ll update this post to include their response. Post Update: Fringer replied to my message promptly. Details in an upcoming blog post.

Related Resources

Copyright © 2022 Walter Sanford. All rights reserved.

What’s wrong with these pictures?

August 23, 2022

Remember “What’s wrong with this picture?” puzzles? For example, a kangaroo hidden in a tower of giraffes. That’s right, “tower” is the collective noun for a group of giraffes. So what’s wrong with the following pictures?

Nothing is “wrong” with the pictures, other than the fact that they are quick-and-dirty photos taken using my Apple iPad mini 6 camera and built-in flash. But there is something incongruous. Look closely and you should notice that a Canon lens is mounted on a Fujifilm camera body. How is that possible?

A closer view shows a Fringer EF-FX Pro II lens mount adapter located between the Canon lens and Fujifilm camera body. Net result: The Canon lens works with my Fufifilm camera just like Fujifilm/Fujinon lenses.

During limited testing, the lens worked perfectly with the camera. I plan to post some test shots in an upcoming blog post.

The Backstory

The Canon EF 100mm macro lens is one of my favorite lenses — it takes tack-sharp photos that look great! I don’t use the lens as often as I should because my Canon EOS 5D Mark II DSLR isn’t as feature-rich as relatively newer digital cameras such as my Fujifilm X-T3.

I’ve been thinking about upgrading my 5D Mark II to one of the two new Canon APS-C sensor camera models, but for now I decided to save money and buy the Fringer adapter instead. So far so good!

Related Resources

Copyright © 2022 Walter Sanford. All rights reserved.

Dark and moody

November 19, 2021

I spotted an emergent Uhler’s Sundragon (Helocordulia uhleri) during a photowalk along a mid-size stream at an undisclosed location in Prince William County, Virginia USA. The following photograph shows the exuvia from which the teneral adult emerged.

13 APR 2021 | PNC. Wm. County, VA | Uhler’s Sundragon | exuvia (ventral)

In the opinion of the author, larvae (nymphs)/exuviae from Family Corduliidae (Emeralds) and Family Libellulidae (Skimmers) can be challenging to differentiate and identify to the family level.

One way to differentiate Emerald from Skimmer larvae/exuvia is to look for a “ventromedial groove” in the prementum: it’s probably Corduliidae (Emeralds) if there is a ventromedial groove; it’s probably Libellulidae if there isn’t.

Look closely at a version of the preceding photo that was reformatted, rotated, and cropped to show an enlarged view of the prementum. You should notice a ventromedial groove on the basal half of the prementum, indicating this specimen is a member of Family Corduliidae (Emeralds).

13 APR 2021 | PNC. Wm. County, VA | Uhler’s Sundragon | exuvia (ventral)

Three raised structures on the underside of the prementum remind me of the hood ornament on a 1949 Lincoln automobile. (No, I wasn’t alive in 1949!)

Related Resources

Tech Tips

One reason I underexposed the photo is to add definition to the ventromedial groove and avoid overexposing the black background.

I prefer a white background for photographing odonate exuviae. Using a black background proved to be more challenging than I expected. More later in a follow-up blog post.

Copyright © 2021 Walter Sanford. All rights reserved.

Sumo Citrus still life

March 19, 2021

Have you seen/eaten Sumo Citrus? They’re easy to peel, seedless, and billed as “the sweetest orange.” Delicious, I say!

How I got the shots

I set up a tripod at a good distance from the subject for a 50mm lens. Then I switched cameras without moving the tripod. Each camera/lens combo was set for an aperture of f/8; other camera and flash settings varied as necessary. (See EXIF info for details regarding camera settings for each photo.)

Canon 5D Mark II

Canon EF 50mm f/1.8 II lens (“Nifty 50”), Godox X2TC, Godox TT685C plus Lastolite flash modifier.

18 March 2021 | BoG Photo Studio | Sumo Citrus

Fujifilm X-T1

Fujinon 18-55mm zoom kit lens set for 34mm (51mm, 35mm equivalent), Godox XProF, Godox TT685C plus Lastolite flash modifier.

18 March 2021 | BoG Photo Studio | Sumo Citrus

Fujifilm X-T3

Fujifilm 11mm extension tube, Fujinon XF80mm macro lens, Vello Off-Camera TTL Flash Cord, Godox X2TF, Godox TT685C plus Lastolite flash modifier.

18 March 2021 | BoG Photo Studio | Sumo Citrus

Sumo Citrus from Giant Food

Bernard Nimmons is the produce manager at the Giant Food located in Beacon Center. I sent a Facebook Messenger message to Bernard recently…

I need Sumo Oranges STAT! Are they back in stock?

The following selfie photo is Bernard’s reply to my message. Now you can see why I always say “Bernard puts the ‘Pro’ in Produce.”

Selfie photo used with permission from Bernard Nimmons.

Copyright © 2021 Walter Sanford. All rights reserved.

Last rose, revisited

November 18, 2020

15 NOV 2020 | The Beacon of Groveton | rose flower

The preceding photograph shows the same rose bud that was featured in my last blog post, two days later.

Tech Tips

A rose flower cutting from the landscaping at The Beacon of Groveton was photographed against a pure white background (255, 255, 255) using the “Meet Your Neighbours” (MYN) technique.

I used my Fujifilm X-T3 digital camera, a Fujifilm 11mm extension tube, and Fujinon XF80mm macro lens.

One external flash was used to backlight the background (a piece of translucent white plastic) and another flash was used as a key light on the subject.

Check the EXIF/IPTC info for the photograph for complete details regarding photo gear and camera settings.

This photo is a “one-off,” that is, not a focus-stacked composite image. Although the camera aperture was set for f/16, only a small part of the image is in focus.

Copyright © 2020 Walter Sanford. All rights reserved.

More experimentation with tethered shooting

August 12, 2020

Oh no! I have become the blogger who cried wolf. Yes, I’m guilty of over-promising and under-delivering. I promise to do better. Oops, I did it again! (Queue Britney Spears…)

Why tethered shooting?

In case you’re wondering what piqued my interest in tethered shooting, I was bored. I had figured out all there is to know about non-tethered shooting so I needed a new challenge. Not!

Tethered shooting enables me to quickly check composition, exposure, and focus, to name a few advantages of tethered versus non-tethered shooting — on a larger screen than the LCD on the back of my cameras.

Bear in mind, I don’t want to edit the photo files using my laptop computer (Apple 11″ MacBook Air) — I prefer to use my desktop computer (Apple 24″ iMac) for photo editing.

Latest testing

The following photos were taken by tethering my Fujifilm X-T3 digital camera to an Apple 11″ MacBook Air computer, via a TetherTools USB cable. FUJIFILM Tether Shooting Plug-in PRO was used to save JPG files to a folder on the desktop of my MacBook Air; in turn, the JPG images were displayed in Adobe Lightroom. Both JPG and RAF files were saved to one of two memory cards in the X-T3.

Notice the difference in way these two photos were lighted. Both shots were taken using a single off-camera flash. The position of the flash resulted in more- or less dramatic light. Each shot shows something better than the other, so I was unable to choose a clear favorite. What’s your preference?

Tips and Tricks

Oh yeah, the tips and tricks I have been promising are still in the pipeline. I made some screen grabs today to illustrate the process of tethered shooting. Turns out I overlooked a critical setting so all of the graphics are useless. Doh! Can you say “Do over”?

Copyright © 2020 Walter Sanford. All rights reserved.

%d bloggers like this: