What is the “neighborhood play” in baseball?
The “neighborhood play” is a colloquial term used to describe the leeway granted to middle infielders with regards to touching second base while in the process of turning a ground-ball double play. Though it is not explicitly mentioned in the rulebook, middle infielders were long able to record an out on the double-play pivot simply by being in the proximity — or neighborhood — of the second-base bag. Source Credit: Neighborhood Play, MLB Glossary.
And so it is with the 3-D printed plastic “lens” adapter I bought recently for my Fujifilm X Series cameras. The lens adapter, assembled so that it includes all three pieces (photo credit: Nicholas Sherlock Photography), puts a 4x magnification microscope objective in the neighborhood of where it should be for optimal performance.
Naturally I was curious to know exactly where the microscope objective should be mounted and whether the “lens” actually performs better at that distance.
Theory
I consulted the experts at amateurmicrography.net and asked for guidance specifically for my Fujifilm X-Series mirrorless digital cameras. Thanks to Mr. Rik Littlefield for his quick reply!
First, Rik referred me to an article from the Frequently Asked Questions (FAQ) forum: FAQ: How can I hook a microscope objective to my camera? In this blog post, I will refer to the following annotated image — the first one in the FAQ article.

Photo Credit: Rik Littlefield.
Let me summarize Rik’s detailed answer to my question.
Microscope objectives like the two 4x magnification microscope objectives I own and the 10x objective shown in the preceding annotated image, are designed to work with microscopes featuring a mechanical tube length of 160 mm minus 10 mm for the microscope’s eyepiece. [The microscope objective forms an image at the bottom of the microscope eyepiece, according to Allan Walls in Macro Talk #17 (~8:30).]
The difference of 150 mm (160 mm – 10 mm = 150 mm) is known as the optical tube length, and in photomicrography, is the distance the microscope objective should be mounted from the plane of the camera sensor (as shown above).
Fujifilm X Series mirrorless digital cameras have a flange focal distance (FFD) of 17.7 mm, meaning the distance between the plane of the camera sensor and the face of the lens mount on the front of the camera body is 17.7 mm (as shown above). 150 mm – 17.7 mm = 132.3 mm. 132.3 mm is the ideal mounting distance between the “lens” and the outside of the camera body.
The next photograph shows the customized 4x magnification macro rig I was able to cobble together using photography gear I had on-hand already, following Rik’s recommendations. Briefly, several extension tubes were used to mount the “crop” configuration of my 3-D printed plastic lens adapter and 4x magnification microscope objective on a Fujifilm X-T3 digital camera.

My customized 4x magnification macro rig.
Remember, my goal was to move the microscope objective 132.3 mm from the face of the camera body. I combined two 16mm extension tubes and one 10mm extension tube (42 mm total) with the “crop” configuration of the plastic lens adapter (~90 mm from back to front). 42 mm + 90 mm = 132 mm. That’s “good enough for government work” as we say in Washington, D.C.
In contrast, the full size 3-D printed plastic lens adapter moves the microscope objective 142 mm from the face of the camera body — in the neighborhood but a little farther than it should be.
Gear I used
The following equipment list includes all items mounted on the Fujifilm X-T3 camera body shown in the preceding photo.
Finally, a few words about extension tubes designed for Fujifilm X Mount cameras.
Fujifilm makes two extension tubes, as of this writing: the MCEX-11; and MCEX-16. I bought both the 11mm and 16mm extension tubes, although in retrospect, the 11mm is the only one I recommend buying (based upon my usage). It’s good to have found a purpose for the MCEX-16.
When I bought my Fujifilm X-T1 camera more than 10 years ago, Fujifilm didn’t offer extension tubes for sale. “Fotasy” was the first third-party company to sell extension tubes with electronic contacts for Fujifilm X Mount cameras. I bought both sizes that were available (10mm and 16mm) and they worked well, that is until Fujifilm released their proprietary extension tubes — at that point the Fotasy extension tubes were incompatible with newer lenses sold by Fujifilm. Although my older Fotasy extension tubes don’t work with newer Fujifilm lenses, they are perfect in this case because my customized 4x magnification macro rig is all manual all the time.
Gear that could be used (instead of my rig)
What if you don’t have a “junk drawer” of old, unused camera gear like me? Rik Littlefield recommended the following items that could be used for mounting a 4x microscope objective on a Fujifilm X Series camera.
Theory into practice
My customized 4x magnification macro rig was used to photograph a small part of a dime, that is, a 10-cent coin in U.S. currency.
All three photos …
- were shot handheld (not recommended for this camera rig). A single external flash unit was used to light each photo.
- are “one-offs,” meaning they aren’t focus-stacked. At a magnification of 4x the depth of field is extremely shallow. The net result is relatively little of each photo appears to be acceptably in focus.
- are “full frame” (6240 × 4160 pixels), meaning they are uncropped.
For scale, the letters “DIM” are approximately 5 mm wide on the actual coin.

A small part of a dime (10-cent coin in U.S. currency).

A small part of a dime (10-cent coin in U.S. currency).

A small part of a dime (10-cent coin in U.S. currency).
Are these photos better than the test shots I took when I first got the 3-D printed plastic lens adapter? You be the judge, but I think they are qualitatively better.
Related Resources
Copyright © 2022 Walter Sanford. All rights reserved.
Like this:
Like Loading...