Archive for the ‘natural science’ Category

Outflow boundary

July 7, 2023

What goes up must come down.

A simple conceptual model of a thunderstorm includes an updraft and downdraft. Sometimes the downdraft causes an “outflow boundary.”

What is an outflow boundary?

Outflow Boundary

A storm-scale or mesoscale boundary separating thunderstorm-cooled air (outflow) from the surrounding air; similar in effect to a cold front, with passage marked by a wind shift and usually a drop in temperature. Outflow boundaries may persist for 24 hours or more after the thunderstorms that generated them dissipate, and may travel hundreds of miles from their area of origin.

New thunderstorms often develop along outflow boundaries, especially near the point of intersection with another boundary (cold front, dry line, another outflow boundary, etc.; see triple point).

Source Credit: Glossary, NOAA National Weather Service.

Recent outflow boundary near my location

Notice the intense thunderstorm located to the northwest of the blue reticle that marks my location. The large cell produced heavy rainfall, as indicated by the red radar echoes and green polygon that outlines an area where a flash flood warning was issued.

Click on the following image to see a full-screen view of the animated GIF.

05 JUL 2023 | KWLX | Outflow boundary

Now notice the ring of radar echoes that radiate outward from the dissipating thunderstorm cell. That’s an outflow boundary!

If you pour water on a flat surface, then the water will spread out in all directions. Like water, the atmosphere is a fluid (albeit much less dense than water) and behaves similarly.

Also notice another strong thunderstorm that formed along the outlfow boundary (to the southeast of the blue reticle) where the gust front might have interacted with some type of atmospheric boundary that caused uplift and fueled a new thunderstorm cell.

Related Resources

Copyright © 2023 Walter Sanford. All rights reserved.

Updating broken links

June 30, 2023

The Internet is dynamic. Resources come and go, and Web addresses change. As a consequence, my blog is littered with a lot of broken links. I’m unaware of many of the broken links, and I’m disinclined to make the effort to fix some of the others.

But when someone takes the time to let me know about a broken link to a useful resource, I make an effort to update my blog. Case in point, Sharon Pitcairn Forsyth gave me a heads-up recently that two links were broken in my Stylurus spiniceps exuvia blog post. I’m happy to report the problem is solved.

Gomphids to Genus, by Kevin Hemeon | NymphFest 2016

Stylurus to Genus, by Kevin Hemeon | NymphFest 2016

Full disclosure: Both of these Microsoft PowerPoint presentations were created by Kevin Hemeon and presented by Kevin during NymphFest 2016 on March 04-06 in Bennington, Vermont. I’m not sure whether I’m authorized to redistribute these reference documents, but in my defense they were released into the wild by workshop host Bryan Pfeiffer soon after the end of NymphFest 2016. And as anyone who has dealt with genies knows, it’s impossible to get them back in the bottle after they’re released.

Related Resources

Copyright © 2023 Walter Sanford. All rights reserved.

Thunderstorms, mesocyclones, and tornadoes. Oh my!

April 25, 2023

As a weather enthusiast, RadarScope is my go-to weather app for tracking the approach and passing of weather systems such as the line of strong thunderstorms that affected the Washington, D.C. metropolitan region on Saturday, 22 April 2023.

Animated GIF created by RadarScope app. (11:44 AM to 11:58 AM)

The following annotated screenshot shows a few basic buttons; their function is described below the graphic.

My location, radar sites, and warnings. (12:01 PM)

  1. My location. (See blue reticle, center screen.)
  2. Radar sites. (KWLX, located in Sterling, Virginia, is the National Weather Service radar site nearest to my location.
  3. Warnings. (Two warnings were in effect when this screenshot was captured.)

A fly-out panel appears when you click on the Warnings button. As you can see, there were two Severe Thunderstorm Warnings in effect at the time of the screenshot. If you click on one of the warnings then RadarScope automatically takes you to a zoomed-in view of the warning area. Click on the button for “My location” to return to your home location.

Warnings. (11:58 AM)

Tornado Warning

Soon afterward, a Tornado Warning was issued for Culpeper- and Madison Counties in Virginia, as indicated by the red polygon. Notice the red polygon is nested inside a yellow polygon that outlines an area where a Severe Thunderstorm Warning was issued.

Tornado Warning (red polygon). (12:30 PM)

Click on the red polygon for more information about the Tornado Warning.

Tornado Warning (information). (12:30 PM)

The next screenshot shows the “Super-Res Reflectivity” radar product, zoomed in on the Tornado Warning area. With a lot of imagination, you can almost see something that looks a little like the classic “hook echo” associated with tornadoes. Almost, but not quite.

Super-Res Reflectivity. (12:30 PM)

Time to switch to the Storm Relative Velocity radar product, shown below. This is where Doppler weather radar really shines. Greens indicate radar echoes moving toward the KWLX radar site; reds indicate radar echoes moving away from the radar site (like brake lights on a car driving away from you).

The following image shows the thunderstorm cell is rotating counterclockwise — this is known as a mesocyclone and is the reason for the Tornado Warning.

Storm Relative Velocity. (12:27 PM)

Within the broader area of counterclockwise circulation there is a tighter area of greens and reds, as shown more clearly in the Super-Res Storm Relative Velocity radar product.

Super-Res Storm Relative Velocity. (12:32 PM)

It’s important to note that the orientation of side-by-side greens and reds typical of rotating thunderstorm cells varies depending upon the location of the storm cell relative to the weather radar site. In the example shown above the greens are on the right and the reds are on the left because the warning area is located to the southwest of KWLX. In contrast, if the warning area were located to the northeast of the radar site, then the reds would be on the right and the greens on the left.

As it turns out, there were’nt any official Tornado Reports for Virginia. Later the same day, a small F0 tornado touched down briefly in Montgomery County, Maryland.

Related Resources

The following resources from the National Weather Service provide excellent background information about Doppler weather radar.

More RadarScope-specific resources are available from the creators of the app.

Copyright © 2023 Walter Sanford. All rights reserved.

Dragonfly Curriculum Guide Supplemental Videos

December 16, 2022

One of my photos is featured in a new video entitled Determining Dragonfly Sex: Dragonfly video 15, by Dr. Ami Thompson. See the inset photo in the following video screen capture.

The video is one of 15 Dragonfly Curriculum Guide Supplemental Videos coproduced by Ami Thompson and Peter Xyooj. The Dragonfly Curriculum Guide (PDF) is available for free.

Notice my last name is misspelled in the credits at the end of the video: Stanford is an institution; I should be institutionalized. <Rim shot!> Oh well, at least my name is spelled correctly in the video screen capture shown above.

The inset photo is from “Mocha Emerald dragonfly claspers,” a blog post that I published on 13 July 2017.

09 JUL 2017 | Huntley Meadows Park | Mocha Emerald (male)

Related Resources

Copyright © 2022 Walter Sanford. All rights reserved.

Common Green Darner exuviae (male vestigial genitalia)

December 6, 2022

Male odonates in Suborder Anisoptera (Dragonflies) have two sets of sex organs: primary genitalia located on abdominal segment nine (S9); and secondary genitalia located on abdominal segments two-to-three (S2-3).

For some (but not all) species of odonate larvae/exuviae, sex is indicated by either a rudimentary ovipositor (female) or vestigial genitalia (male). These sex organs don’t look exactly the same for all species of dragonflies, but their function is identical.

The following annotated images show the male vestigial genitalia for two Common Green Darner (Anax junius) exuviae collected by Jason Avery during Summer 2022 in Calvert County, Maryland USA. All of the images show the ventral side of the exuviae.

Male No. 1

Summer 2022 | Common Green Darner (Anax junius) | exuvia (male)

Summer 2022 | Common Green Darner (Anax junius) | exuvia (male)

Male No. 2

Summer 2022 | Common Green Darner (Anax junius) | exuvia (male)

Look closely at the following image and you should notice the secondary genitalia appear to extend from S2 to S3. In this case, only the more prominent parts on S3 are labeled.

Summer 2022 | Common Green Darner (Anax junius) | exuvia (male)

Related Resources

Tech Tips

All of the preceding images were photographed by Jason Avery and annotated by Walter Sanford. Thanks to Jason for kindly sharing his photos!

Copyright © 2022 Walter Sanford. All rights reserved.

Post update: Which family is it?

December 2, 2022

The following odonate exuvia is from a damselfly in Suborder Zygoptera.

The overall shape of the prementum (highlighted by a red rectangle) indicates this specimen is from Family Calopterygidae (Broad-winged Damselflies). Notice the embedded raindrop shape (highlighted by a purple rectangle), located toward the upper-center of the prementum — a key field mark for this family.

03 SEP 2022 | Powhatan County, VA USA | (exuviaventral side)

Two genera from Family Calopterygidae are common in the Commonwealth of Virginia: Hetaerina; and Calopteryx. For species in Genus Calopteryx the raindrop shape (Fig. 19) looks more like a diamond shape (Fig. 18), so it’s probably safe to infer this specimen is a species in Genus Hetaerina.

Related Resources

Post Update: Congratulations to Doug Mills, Wally Jones, and Bob Perkins for correctly identifying the family of this exuvia.

Doug and Wally looked at the shape of the prementum. Bob looked at the antennae.

The long middle segment on the antennae is the key, found only on Calopterygidae nymphs. Nymphs of the other families have antenna segments that are progressively shorter from base to tip. Source Credit: Bob Perkins.

Looking at the prementum should enable you to identify all three families; looking at antennae works for only one family.

Copyright © 2022 Walter Sanford. All rights reserved.

Which family is it?

November 29, 2022

An odonate exuvia was collected by Cindy Haddon Andrews on 03 September 2022 along the James River, near the Maidens Boat Landing in Powhatan County, Virginia USA. External gills (3) indicate this specimen is from a damselfly in Suborder Zygoptera.

Pattern recognition can be used to tentatively identify damselfly larvae/exuviae to the family level: the shape of the prementum is characteristic for each of the three families found in the mid-Atlantic region of the United States of America.

Your mission, should decide to accept it, is to identify the family to which the following damselfly exuvia belongs.

03 SEP 2022 | Powhatan County, VA USA | (exuviaventral side)

The camera lens was manually focused on the prementum, located near the anterior end of the exuvia.

Here is the same photo rotated 90° clockwise.

03 SEP 2022 | Powhatan County, VA USA | (exuviaventral side)

If you think you know the family, then please leave a comment. The correct answer will be revealed in a post update.

Related Resource: How to Identify Damselfly Exuviae to Family – a photo-illustrated identification guide by Walter Sanford.

Copyright © 2022 Walter Sanford. All rights reserved.

Archilestes grandis exuvia (female)

November 25, 2022

An odonate exuvia from a Great Spreadwing damselfly (Archilestes grandis) was collected by Edgar Spalding at a small private pond in Middleton, Wisconsin USA.

SEP 2022 | Middleton, WI | Archilestes grandis (exuvia, ventral side)

External gills (3), highlighted by a blue rectangle in the following annotated image, indicate the exuvia is from a damselfly in Suborder Zygoptera.

The camera lens was manually focused on the prementum, located near the anterior end of the exuvia (highlighted by a red rectangle). The overall shape of the prementum indicates this specimen is from Family Lestidae (Spreadwings); the unique shape of the palpal lobes (highlighted by a purple rectangle) indicates Genus Archilestes.

There are two species in Genus Archilestes in North AmericaArchilestes californicus; and Archilestes grandis. I think it’s reasonable to infer this individual is A. grandis since Wisconsin is far out of range for A. californicus.

SEP 2022 | Middleton, WI | Archilestes grandis (exuvia, ventral side)

This individual is a female, as indicated by the rudimentary ovipositor located on the ventral side of its abdomen, near the posterior end (highlighted by a green rectangle in the preceding annotated image).

Related Resources

Copyright © 2022 Walter Sanford. All rights reserved.

Iberian odonate larvae

September 16, 2022

During late-October 2021, I was contacted by Miguel A. Conesa-García, PhD, Profesor Tutor Biología, Diversidad Animal, Ciencias Ambientales, UNED-Málaga.

Miguel was working on finishing the second edition of his book about odonate larvae in the Iberian Peninsula (Spain and Portugal). When Miguel was almost finished, an adult male Wandering Glider dragonfly (Pantala flavescens) was spotted in Spain. P. flavescens is a new species of odonate for the region, so Miguel decided to add the new discovery to the species list in his book.

Cover photo, courtesy Amazon Books.

The following screen capture shows the search string I used to find the book on Amazon.

Screen capture, Amazon Books.

The book is richly illustrated with beautiful photos and diagrams. It’s abundantly evident I could learn a lot from the book — I wish there were an English Edition!

Miguel requested permission to use a photo of a Wandering Glider exuvia in my photoblog, published on 14 November 2018. I was, of course, willing to help.

Page excerpt from Miguel’s book, featuring my photo.

I’m mentioned in the acknowledgements at the end of the book. Regrettably my first name is misspelled and the Web address cited is no longer current. I took the liberty of annotating the page from Miguel’s book to provide the correct information.

Acknowledgements, p. 539 (annotated).

Acknowledgements, p. 539 (original).

Migratory Dragonflies

Wandering Glider is one of at least five major species of dragonflies known to be migratory in North America. P. flavescens is the only species of odonate known to occur on every continent except Antarctica.

The exuvia that I photographed is the “cast skin” from an odonate larva (nymph) that was collected in the field by Andy Davidson, a graduate student at Virginia Commonwealth University in Richmond, Virginia USA. Andy reared the larva in the laboratory as part of a research project entitled “Predator-Prey Interactions in a Changing World.”

Part of the value in rearing odonate larvae in the laboratory is knowing with certainty that an exuvia is from a particular species. This is perhaps the reason that Miguel chose to use my photo.

Related Resources

Copyright © 2022 Walter Sanford. All rights reserved.

Pantala versus Tramea exuviae/larvae

August 12, 2022

Sometime during the late 1950s or early 1960s, my father bought a new car. That was a big deal in our family. My family was poor, although I didn’t realize it when I was a young boy. We couldn’t afford a new car very often. I don’t remember many details about the car other than it was a sky blue Plymouth with tail fins. Big tail fins! My best guess is the car was a four-door Plymouth Fury, sold from 1957 – 1960.

Some odonate exuviae/larvae remind me of the tail fins on my father’s Plymouth automobile. Go figure. Anyway, pattern recognition can be used to make it a little easier to identify exuviae. For example, when I see an exuvia with long “tail fins,” my first thought is it’s probably from one of two genera, possibly three: genus Pantala; genus Tramea; or maybe genus Celithemis.

Dichotomous keys

The following couplet from Identification Keys to Northeastern Anisoptera Larvae, compiled by Ken Soltesz, can be used to differentiate exuvia from Genus Pantala and Genus Tramea.

p. 37, Key to the Genera of the Family Libellulidae
12a – Superior abdominal appendage (epiproct) as long as, or longer than inferiors [paraprocts]. Pantala
12b – Superior abdominal appendage (epiproct) shorter than inferiors [paraprocts]. Tramea

Soltesz, p. 39.

Soltesz, p. 40.

Soltesz, p. 41.

Genus Pantala (Rainpool Gliders)

The genus Pantala includes two (2) species in North America: Spot-winged Glider (Pantala hymenaea); and Wandering Glider (Pantala flavescens).

Spot-winged Glider and Wandering Glider larvae/exuviae look similar. The lateral spines on abdominal segment nine (S9) are noticeably shorter for P. hymenaea (shown left) than P. flavescens (shown right) — a key field mark that can be used to differentiate the two species.

Genus Tramea (Saddlebags)

The genus Tramea includes seven (7) species in North America. Two of those species are found commonly in the Commonwealth of Virginia: Black Saddlebags (Tramea lacerata); and Carolina Saddlebags (Tramea carolina).

Carolina Saddlebags

A Carolina Saddlebags dragonfly (Tramea carolina) larva was collected by Andy Davidson near Richmond, Virginia USA, and reared to maturity. Andy saved the exuvia after emergence.

A vertical white line marks the mid-dorsal length of abdominal segment nine (S9), as shown in the following annotated image; the vertical black line labeled “mid-dorsal length” is the same length as the white line. Notice the lateral spines of abdominal segment nine (S9) are much longer than its mid-dorsal length.

(See a full-size version of the original photo, without annotation.)

One of the keys to identifying skimmer dragonflies to the species level is to carefully examine the anal pyramid (S10), including the cerci (sing. cercus), epiproct, and paraprocts. Notice the epiproct is shorter than the paraprocts.

There is a lot of “seaweed” (aquatic vegetation) clinging to the exuvia, especially noticeable at the posterior end. Some collectors like to clean their specimens; I prefer to photograph them “as is.”

Black Saddlebags

Athough adult Black Saddlebags dragonflies (Tramea lacerata) are relatively common in Virginia, the author has never seen an exuvia from this species.

Genus Celithemis (Pennants)

The genus Celithemis includes eight (8) species in North America. The author has a specimen from only one of these species in his collection.

Calico Pennant dragonfly (Celithemis elisa) evuvia was collected by Sue and John Gregoire at Kestrel Haven Migration Observatory. For more than a decade, Sue and John have closely monitored the annual emergence of a large population of C. elisa at their farm pond.

Notice the long lateral spines that look similar to larvae/exuviae in genus Pantala and genus Tramea.

Related Resources

Identification Keys to Northeastern Anisoptera Larvae, compiled by Ken Soltesz.

  • p. 36 = Key to the Genera of Family Libellulidae
  • p. 37 = Pantala, Tramea
  • p. 39 = Key to the species of genus Pantala: hymenaea; flavescens
  • p. 41 = Key to the species of genus Tramea: carolina; lacerta

A Checklist of North American Odonata – Including English Name, Etymology, Type Locality, and Distribution, by Dennis R. Paulson and Sidney W. Dunkle.

Copyright © 2022 Walter Sanford. All rights reserved.